Professor Chris Linington

  • Honorary Senior Research Fellow, Honorary Senior Lecturer (School of Infection & Immunity)

Publications

List by: Type | Date

Jump to: 2023 | 2022 | 2021 | 2020 | 2019 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008
Number of items: 41.

2023

Thümmler, K. et al. (2023) Fibroblast growth factor 9 (FGF9) mediated neurodegeneration: implications for progressive multiple sclerosis? Neuropathology and Applied Neurobiology, 49(5), e12935. (doi: 10.1111/nan.12935) (PMID:37705188)

2022

Baldacchino, K. et al. (2022) Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Experimental Neurology, 354, 114113. (doi: 10.1016/j.expneurol.2022.114113) (PMID:35569511)

Crawford, C. L. et al. (2022) SARM1 depletion slows axon degeneration in a CNS model of neurotropic viral infection. Frontiers in Molecular Neuroscience, 15, 860410. (doi: 10.3389/fnmol.2022.860410) (PMID:35493328) (PMCID:PMC9043327)

Lindsay, S. L. , Molęda, A. M., MacLellan, L. M., Keh, S. M., McElroy, D. E., Linington, C. , Goodyear, C. S. and Barnett, S. C. (2022) Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathologica Communications, 10, 12. (doi: 10.1186/s40478-022-01316-9) (PMID:35093166) (PMCID:PMC8800340)

2021

Baksmeier, C. et al. (2021) Modified recombinant human IgG1-Fc is superior to natural intravenous immunoglobulin at inhibiting immune-mediated demyelination. Immunology, 164(1), pp. 90-105. (doi: 10.1111/imm.13341) (PMID:33880776) (PMCID:PMC8358725)

Marignier, R. et al. (2021) Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurology, 20(9), pp. 762-772. (doi: 10.1016/S1474-4422(21)00218-0)

Schultz, V. et al. (2021) Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: implications for CNS complications. Glia, 69(8), pp. 2023-2036. (doi: 10.1002/glia.24010) (PMID:33942402) (PMCID:PMC9216243)

Lindsay, S. , Molęda, A., Maclellan, L., Linington, C. , Goodyear, C. and Barnett, S. (2021) Severe experimental autoimmune encephalomyelitis (EAE) is ameliorated by human olfactory-derived mesenchymal stromal cell transplantation revealing a role for IL-16. XV European Meeting on Glial Cells in Health and Disease, 5-9 July 2021. E430-E432. (doi: 10.1002/glia.24036)

Schultz, V. et al. (2021) Zika virus infection leads to demyelination and axonal injury in mature CNS cultures. Viruses, 13(1), 91. (doi: 10.3390/v13010091) (PMID:33440758) (PMCID:PMC7827345)

2020

Hayden, L. et al. (2020) Lipid-specific IgMs induce antiviral responses in the CNS: implications for progressive multifocal leukoencephalopathy in multiple sclerosis. Acta Neuropathologica Communications, 8, 135. (doi: 10.1186/s40478-020-01011-7) (PMID:32792006) (PMCID:PMC7427287)

2019

Thümmler, K. et al. (2019) Polarizing receptor activation dissociates Fibroblast Growth Factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathologica Communications, 7, 212. (doi: 10.1186/s40478-019-0864-6) (PMID:31856924) (PMCID:PMC6923900)

Enz, L. S., Zeis, T., Hauck, A., Linington, C. and Schaeren-Wiemers, N. (2019) Combinatory multifactor treatment effects on primary nanofiber oligodendrocyte cultures. Cells, 8(11), 1422. (doi: 10.3390/cells8111422) (PMID:31726669) (PMCID:PMC6912369)

Bijland, S. et al. (2019) An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Research, 8, 117. (doi: 10.12688/f1000research.16802.1) (PMID:31069065) (PMCID:PMC6489523)

Stojic, A., Bojcevski, J., Williams, S. K., Bas-Orth, C., Nessler, S., Linington, C. , Diem, R. and Fairless, R. (2019) Preclinical stress originates in the rat optic nerve head during development of autoimmune optic neuritis. Glia, 67(3), pp. 512-524. (doi: 10.1002/glia.23560) (PMID:30578556) (PMCID:PMC6590123)

2017

Lagumersindez-Denis, N. et al. (2017) Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathologica, 134(1), pp. 15-34. (doi: 10.1007/s00401-017-1706-x) (PMID:28386765)

Cumberworth, S. L. et al. (2017) Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathologica Communications, 5, 50. (doi: 10.1186/s40478-017-0450-8) (PMID:28645311) (PMCID:PMC5481922)

2016

Allan, D., Fairlie-Clarke, K. J., Elliott, C. , Schuh, C., Barnett, S. C. , Lassmann, H., Linnington, C. and Jiang, H.-R. (2016) Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathologica Communications, 4(1), 75. (doi: 10.1186/s40478-016-0344-1) (PMID:27455844) (PMCID:PMC4960877)

Al Nimer, F. et al. (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurology: Neuroimmunology and Neuroinflammation, 3(1), e191. (doi: 10.1212/NXI.0000000000000191) (PMID:26770997) (PMCID:PMC4708925)

2015

Flytzani, S., Guerreiro-Cacais, A. O., N’diaye, M., Lindner, M., Linington, C. , Meinl, E., Stridh, P., Jagodic, M. and Olsson, T. (2015) MOG-induced experimental autoimmune encephalomyelitis in the rat species triggers anti-neurofascin antibody response that is genetically regulated. Journal of Neuroinflammation, 12, 194. (doi: 10.1186/s12974-015-0417-2) (PMID:26511327) (PMCID:PMC4625640)

Lindner, M. et al. (2015) Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain, 138(7), pp. 1875-1893. (doi: 10.1093/brain/awv102) (PMID:25907862) (PMCID:PMC7185739)

Parker Harp, C. R., Archambault, A. S., Sim, J., Ferris, S. T., Mikesell, R. J., Koni, P. A., Shimoda, M., Linington, C. , Russell, J. H. and Wu, G. F. (2015) B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. Journal of Immunology, 194(11), pp. 5077-5084. (doi: 10.4049/jimmunol.1402236) (PMID:25895531) (PMCID:PMC4433779)

Hansell, C. A., MacLellan, L. M., Oldham, R. S., Doonan, J., Chapple, K. J., Anderson, E. J., Linington, C. , McInnes, I. B. , Nibbs, R. J. and Goodyear, C. S. (2015) The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunology and Cell Biology, 93(2), pp. 167-176. (doi: 10.1038/icb.2014.90) (PMID:25348934) (PMCID:PMC4340511)

2014

Hochmeister, S., Pekar, T., Lindner, M., Kitic, M., Haindl, M., Storch, M., Fazekas, F. and Linington, C. (2014) Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat. PLoS ONE, 9(1), e85393. (doi: 10.1371/journal.pone.0085393) (PMID:24465550) (PMCID:PMC3896359)

Lindner, M. and Linington, C. (2014) Myelinating cultures: an in vitro tool to identify demyelinating and axopathic autoantibodies. In: Weissert, R. (ed.) Multiple Sclerosis: Methods and Protocols. Series: Methods in molecular biology (1304). Humana Press: New York, pp. 105-114. ISBN 9781493926299 (doi: 10.1007/7651_2014_129)

Mohan, H. et al. (2014) Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathologica Communications, 2, 178. (doi: 10.1186/s40478-014-0168-9) (PMID:25589163) (PMCID:PMC4359505)

2013

Davies, A.L. et al. (2013) Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Annals of Neurology, 74(6), pp. 815-825. (doi: 10.1002/ana.24006)

Lindner, M., Ng, J.K.M., Hochmeister, S., Meinl, E. and Linington, C. (2013) Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Experimental Neurology, 247, pp. 259-266. (doi: 10.1016/j.expneurol.2013.05.005)

Barnett, S.C. and Linington, C. (2013) Myelination: do astrocytes play a role? Neuroscientist, 19(5), pp. 442-450. (doi: 10.1177/1073858412465655)

2012

Willison, H.J. and Linington, C. (2012) Antibodies to MOG in NMO: a seasoned veteran finds a new role. Neurology, 79(12), pp. 1198-1199. (doi: 10.1212/WNL.0b013e31826aadaf)

Jiang, H.-R. et al. (2012) IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. European Journal of Immunology, 42(7), pp. 1804-1814. (doi: 10.1002/eji.201141947)

Elliott, C. et al. (2012) Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain, 135(6), pp. 1819-1833. (doi: 10.1093/brain/aws105)

Zujovic, V., Doucerain, C., Hidalgo, A., Bachelin, C., Lachapelle, F., Weissert, R., Stadelmann, C., Linington, C. and Evercooren, A.B.-V. (2012) Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis. PLoS ONE, 7(9), e42667. (doi: 10.1371/journal.pone.0042667) (PMID:22984406) (PMCID:PMC3439443)

2011

Nash, B., Thomson, C.E., Linington, C. , Arthur, A.T., McClure, J.D. , McBride, M.W. and Barnett, S.C. (2011) Functional duality of astrocytes in myelination. Journal of Neuroscience, 31(37), pp. 13028-13038. (doi: 10.1523/JNEUROSCI.1449-11.2011)

Brennan, K.M. et al. (2011) Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. Journal of Neuroimmunology, 238(1-2), pp. 87-95. (doi: 10.1016/j.jneuroim.2011.08.002)

2010

Derfuss, T., Linington, C. , Hohlfeld, R. and Meinl, E. (2010) Axo-glial antigens as targets in multiple sclerosis: implications for axonal and grey matter injury. Journal of Molecular Medicine, 88(8), pp. 753-761. (doi: 10.1007/s00109-010-0632-3)

Sinha, S., Subramanian, S., Emerson-Webber, A., Lindner, M., Burrows, G. G., Grafe, M., Linington, C. , Vandenbark, A. A., Bernard, C. C. A. and Offner, H. (2010) Recombinant TCR Ligand Reverses Clinical Signs and CNS Damage of EAE Induced by Recombinant Human MOG. Journal of Neuroimmune Pharmacology, 5(2), pp. 231-239. (doi: 10.1007/s11481-009-9175-1)

Weber, M.S. et al. (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Annals of Neurology, 68(3), pp. 369-383. (doi: 10.1002/ana.22081)

2009

Derfuss, T. et al. (2009) Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proceedings of the National Academy of Sciences of the United States of America, 106(20), pp. 8302-8307. (doi: 10.1073/pnas.0901496106)

2008

Breithaupt, C., Schäfer, B., Pellkofer, H., Huber, R., Linington, C. and Jacob, U. (2008) Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region in rodents. Journal of Immunology, 181(2), pp. 1255-1263.

Bourquin, C., van der Haar, M., Anz, D., Sandholzer, N., Neumaier, I., Endres, S., Skerra, A., Schwab, M. and Linington, C. (2008) DNA vaccination efficiently induces antibodies to Nogo-A and does not exacerbate experimental autoimmune encephalomyelitis. European Journal of Pharmacology, 588(1), pp. 99-105. (doi: 10.1016/j.ejphar.2008.04.026)

Huizinga, R., Linington, C. and Amor, S. (2008) Resistance is futile: antineuronal autoimmunity in multiple sclerosis. Trends in Immunology, 29(2), pp. 54-60. (doi: 10.1016/j.it.2007.11.002)

This list was generated on Thu Nov 21 04:17:50 2024 GMT.
Number of items: 41.

Articles

Thümmler, K. et al. (2023) Fibroblast growth factor 9 (FGF9) mediated neurodegeneration: implications for progressive multiple sclerosis? Neuropathology and Applied Neurobiology, 49(5), e12935. (doi: 10.1111/nan.12935) (PMID:37705188)

Baldacchino, K. et al. (2022) Myelinated axons are the primary target of hemin-mediated oxidative damage in a model of the central nervous system. Experimental Neurology, 354, 114113. (doi: 10.1016/j.expneurol.2022.114113) (PMID:35569511)

Crawford, C. L. et al. (2022) SARM1 depletion slows axon degeneration in a CNS model of neurotropic viral infection. Frontiers in Molecular Neuroscience, 15, 860410. (doi: 10.3389/fnmol.2022.860410) (PMID:35493328) (PMCID:PMC9043327)

Lindsay, S. L. , Molęda, A. M., MacLellan, L. M., Keh, S. M., McElroy, D. E., Linington, C. , Goodyear, C. S. and Barnett, S. C. (2022) Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathologica Communications, 10, 12. (doi: 10.1186/s40478-022-01316-9) (PMID:35093166) (PMCID:PMC8800340)

Baksmeier, C. et al. (2021) Modified recombinant human IgG1-Fc is superior to natural intravenous immunoglobulin at inhibiting immune-mediated demyelination. Immunology, 164(1), pp. 90-105. (doi: 10.1111/imm.13341) (PMID:33880776) (PMCID:PMC8358725)

Marignier, R. et al. (2021) Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurology, 20(9), pp. 762-772. (doi: 10.1016/S1474-4422(21)00218-0)

Schultz, V. et al. (2021) Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: implications for CNS complications. Glia, 69(8), pp. 2023-2036. (doi: 10.1002/glia.24010) (PMID:33942402) (PMCID:PMC9216243)

Schultz, V. et al. (2021) Zika virus infection leads to demyelination and axonal injury in mature CNS cultures. Viruses, 13(1), 91. (doi: 10.3390/v13010091) (PMID:33440758) (PMCID:PMC7827345)

Hayden, L. et al. (2020) Lipid-specific IgMs induce antiviral responses in the CNS: implications for progressive multifocal leukoencephalopathy in multiple sclerosis. Acta Neuropathologica Communications, 8, 135. (doi: 10.1186/s40478-020-01011-7) (PMID:32792006) (PMCID:PMC7427287)

Thümmler, K. et al. (2019) Polarizing receptor activation dissociates Fibroblast Growth Factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathologica Communications, 7, 212. (doi: 10.1186/s40478-019-0864-6) (PMID:31856924) (PMCID:PMC6923900)

Enz, L. S., Zeis, T., Hauck, A., Linington, C. and Schaeren-Wiemers, N. (2019) Combinatory multifactor treatment effects on primary nanofiber oligodendrocyte cultures. Cells, 8(11), 1422. (doi: 10.3390/cells8111422) (PMID:31726669) (PMCID:PMC6912369)

Bijland, S. et al. (2019) An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Research, 8, 117. (doi: 10.12688/f1000research.16802.1) (PMID:31069065) (PMCID:PMC6489523)

Stojic, A., Bojcevski, J., Williams, S. K., Bas-Orth, C., Nessler, S., Linington, C. , Diem, R. and Fairless, R. (2019) Preclinical stress originates in the rat optic nerve head during development of autoimmune optic neuritis. Glia, 67(3), pp. 512-524. (doi: 10.1002/glia.23560) (PMID:30578556) (PMCID:PMC6590123)

Lagumersindez-Denis, N. et al. (2017) Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis. Acta Neuropathologica, 134(1), pp. 15-34. (doi: 10.1007/s00401-017-1706-x) (PMID:28386765)

Cumberworth, S. L. et al. (2017) Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathologica Communications, 5, 50. (doi: 10.1186/s40478-017-0450-8) (PMID:28645311) (PMCID:PMC5481922)

Allan, D., Fairlie-Clarke, K. J., Elliott, C. , Schuh, C., Barnett, S. C. , Lassmann, H., Linnington, C. and Jiang, H.-R. (2016) Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathologica Communications, 4(1), 75. (doi: 10.1186/s40478-016-0344-1) (PMID:27455844) (PMCID:PMC4960877)

Al Nimer, F. et al. (2016) Lipocalin-2 is increased in progressive multiple sclerosis and inhibits remyelination. Neurology: Neuroimmunology and Neuroinflammation, 3(1), e191. (doi: 10.1212/NXI.0000000000000191) (PMID:26770997) (PMCID:PMC4708925)

Flytzani, S., Guerreiro-Cacais, A. O., N’diaye, M., Lindner, M., Linington, C. , Meinl, E., Stridh, P., Jagodic, M. and Olsson, T. (2015) MOG-induced experimental autoimmune encephalomyelitis in the rat species triggers anti-neurofascin antibody response that is genetically regulated. Journal of Neuroinflammation, 12, 194. (doi: 10.1186/s12974-015-0417-2) (PMID:26511327) (PMCID:PMC4625640)

Lindner, M. et al. (2015) Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain, 138(7), pp. 1875-1893. (doi: 10.1093/brain/awv102) (PMID:25907862) (PMCID:PMC7185739)

Parker Harp, C. R., Archambault, A. S., Sim, J., Ferris, S. T., Mikesell, R. J., Koni, P. A., Shimoda, M., Linington, C. , Russell, J. H. and Wu, G. F. (2015) B cell antigen presentation is sufficient to drive neuroinflammation in an animal model of multiple sclerosis. Journal of Immunology, 194(11), pp. 5077-5084. (doi: 10.4049/jimmunol.1402236) (PMID:25895531) (PMCID:PMC4433779)

Hansell, C. A., MacLellan, L. M., Oldham, R. S., Doonan, J., Chapple, K. J., Anderson, E. J., Linington, C. , McInnes, I. B. , Nibbs, R. J. and Goodyear, C. S. (2015) The atypical chemokine receptor ACKR2 suppresses Th17 responses to protein autoantigens. Immunology and Cell Biology, 93(2), pp. 167-176. (doi: 10.1038/icb.2014.90) (PMID:25348934) (PMCID:PMC4340511)

Hochmeister, S., Pekar, T., Lindner, M., Kitic, M., Haindl, M., Storch, M., Fazekas, F. and Linington, C. (2014) Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat. PLoS ONE, 9(1), e85393. (doi: 10.1371/journal.pone.0085393) (PMID:24465550) (PMCID:PMC3896359)

Mohan, H. et al. (2014) Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathologica Communications, 2, 178. (doi: 10.1186/s40478-014-0168-9) (PMID:25589163) (PMCID:PMC4359505)

Davies, A.L. et al. (2013) Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Annals of Neurology, 74(6), pp. 815-825. (doi: 10.1002/ana.24006)

Lindner, M., Ng, J.K.M., Hochmeister, S., Meinl, E. and Linington, C. (2013) Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Experimental Neurology, 247, pp. 259-266. (doi: 10.1016/j.expneurol.2013.05.005)

Barnett, S.C. and Linington, C. (2013) Myelination: do astrocytes play a role? Neuroscientist, 19(5), pp. 442-450. (doi: 10.1177/1073858412465655)

Willison, H.J. and Linington, C. (2012) Antibodies to MOG in NMO: a seasoned veteran finds a new role. Neurology, 79(12), pp. 1198-1199. (doi: 10.1212/WNL.0b013e31826aadaf)

Jiang, H.-R. et al. (2012) IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. European Journal of Immunology, 42(7), pp. 1804-1814. (doi: 10.1002/eji.201141947)

Elliott, C. et al. (2012) Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain, 135(6), pp. 1819-1833. (doi: 10.1093/brain/aws105)

Zujovic, V., Doucerain, C., Hidalgo, A., Bachelin, C., Lachapelle, F., Weissert, R., Stadelmann, C., Linington, C. and Evercooren, A.B.-V. (2012) Exogenous schwann cells migrate, remyelinate and promote clinical recovery in experimental auto-immune encephalomyelitis. PLoS ONE, 7(9), e42667. (doi: 10.1371/journal.pone.0042667) (PMID:22984406) (PMCID:PMC3439443)

Nash, B., Thomson, C.E., Linington, C. , Arthur, A.T., McClure, J.D. , McBride, M.W. and Barnett, S.C. (2011) Functional duality of astrocytes in myelination. Journal of Neuroscience, 31(37), pp. 13028-13038. (doi: 10.1523/JNEUROSCI.1449-11.2011)

Brennan, K.M. et al. (2011) Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. Journal of Neuroimmunology, 238(1-2), pp. 87-95. (doi: 10.1016/j.jneuroim.2011.08.002)

Derfuss, T., Linington, C. , Hohlfeld, R. and Meinl, E. (2010) Axo-glial antigens as targets in multiple sclerosis: implications for axonal and grey matter injury. Journal of Molecular Medicine, 88(8), pp. 753-761. (doi: 10.1007/s00109-010-0632-3)

Sinha, S., Subramanian, S., Emerson-Webber, A., Lindner, M., Burrows, G. G., Grafe, M., Linington, C. , Vandenbark, A. A., Bernard, C. C. A. and Offner, H. (2010) Recombinant TCR Ligand Reverses Clinical Signs and CNS Damage of EAE Induced by Recombinant Human MOG. Journal of Neuroimmune Pharmacology, 5(2), pp. 231-239. (doi: 10.1007/s11481-009-9175-1)

Weber, M.S. et al. (2010) B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Annals of Neurology, 68(3), pp. 369-383. (doi: 10.1002/ana.22081)

Derfuss, T. et al. (2009) Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proceedings of the National Academy of Sciences of the United States of America, 106(20), pp. 8302-8307. (doi: 10.1073/pnas.0901496106)

Breithaupt, C., Schäfer, B., Pellkofer, H., Huber, R., Linington, C. and Jacob, U. (2008) Demyelinating myelin oligodendrocyte glycoprotein-specific autoantibody response is focused on one dominant conformational epitope region in rodents. Journal of Immunology, 181(2), pp. 1255-1263.

Bourquin, C., van der Haar, M., Anz, D., Sandholzer, N., Neumaier, I., Endres, S., Skerra, A., Schwab, M. and Linington, C. (2008) DNA vaccination efficiently induces antibodies to Nogo-A and does not exacerbate experimental autoimmune encephalomyelitis. European Journal of Pharmacology, 588(1), pp. 99-105. (doi: 10.1016/j.ejphar.2008.04.026)

Huizinga, R., Linington, C. and Amor, S. (2008) Resistance is futile: antineuronal autoimmunity in multiple sclerosis. Trends in Immunology, 29(2), pp. 54-60. (doi: 10.1016/j.it.2007.11.002)

Book Sections

Lindner, M. and Linington, C. (2014) Myelinating cultures: an in vitro tool to identify demyelinating and axopathic autoantibodies. In: Weissert, R. (ed.) Multiple Sclerosis: Methods and Protocols. Series: Methods in molecular biology (1304). Humana Press: New York, pp. 105-114. ISBN 9781493926299 (doi: 10.1007/7651_2014_129)

Conference or Workshop Item

Lindsay, S. , Molęda, A., Maclellan, L., Linington, C. , Goodyear, C. and Barnett, S. (2021) Severe experimental autoimmune encephalomyelitis (EAE) is ameliorated by human olfactory-derived mesenchymal stromal cell transplantation revealing a role for IL-16. XV European Meeting on Glial Cells in Health and Disease, 5-9 July 2021. E430-E432. (doi: 10.1002/glia.24036)

This list was generated on Thu Nov 21 04:17:50 2024 GMT.