Dr Peter Bailey

  • Affiliate (School of Cancer Sciences)

email: Peter.Bailey.2@glasgow.ac.uk

Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow

Import to contacts

ORCID iDhttps://orcid.org/0000-0002-0857-2041

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014
Number of items: 57.

2024

Lupo, F. et al. (2024) Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut, 73(8), pp. 1321-1335. (doi: 10.1136/gutjnl-2023-329807) (PMID:38670629)

De Sanctis, F. et al. (2024) Expression of the membrane tetraspanin claudin 18 on cancer cells promotes T lymphocyte infiltration and antitumor immunity in pancreatic cancer. Immunity, 57(6), 1378-1393.e14. (doi: 10.1016/j.immuni.2024.04.021) (PMID:38749447)

2023

Zhou, X. et al. (2023) Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nature Cancer, 4, pp. 1362-1381. (doi: 10.1038/s43018-023-00628-6) (PMID:37679568) (PMCID:PMC10518256)

Bailey, P. et al. (2023) Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression. Nature Communications, 14, 5211. (doi: 10.1038/s41467-023-40822-9) (PMID:37626054) (PMCID:PMC10457401)

Krug, J. et al. (2023) N-glycosylation regulates intrinsic IFN-γ resistance in colorectal cancer: implications for immunotherapy. Gastroenterology, 164(3), 392-406.e5. (doi: 10.1053/j.gastro.2022.11.018) (PMID:36402190)

Bailey, P. , Zhou, X., An, J., Peccerella, T., Hu, K., Springfeld, C., Büchler, M. and Neoptolemos, J. P. (2023) Refining the treatment of pancreatic cancer from big data to improved individual survival. Function, 4(3), zqad011. (doi: 10.1093/function/zqad011) (PMID:37168490) (PMCID:PMC10165547)

2022

Dings, M. P.G. et al. (2022) Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Reports Medicine, 3(11), 100802. (doi: 10.1016/j.xcrm.2022.100802) (PMID:36334593) (PMCID:PMC9729822)

D'Agosto, S. et al. (2022) Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene, 41(38), pp. 4371-4384. (doi: 10.1038/s41388-022-02432-5) (PMID:35963908) (PMCID:PMC9481460)

Zeng, S. et al. (2022) CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 41, 241. (doi: 10.1186/s13046-022-02443-w) (PMID:35945614) (PMCID:PMC9364549)

Bijlsma, M. F., Bailey, P. J. and Stemmler, M. P. (2022) Editorial: translational insights into pancreatic ductal adenocarcinoma. Frontiers in Cell and Developmental Biology, 10, 875836. (doi: 10.3389/fcell.2022.875836) (PMID:35433705) (PMCID:PMC9012582)

Cattolico, C., Bailey, P. and Barry, S. T. (2022) Modulation of type I interferon responses to influence tumor-immune cross talk in PDAC. Frontiers in Cell and Developmental Biology, 10, 816517. (doi: 10.3389/fcell.2022.816517) (PMID:35273962) (PMCID:PMC8902310)

Schreyer, D., Neoptolemos, J. P., Barry, S. T. and Bailey, P. J. (2022) Deconstructing pancreatic cancer using next generation-omic technologies–from discovery to knowledge-guided platforms for better patient management. Frontiers in Cell and Developmental Biology, 9, 795735. (doi: 10.3389/fcell.2021.795735) (PMID:35096825) (PMCID:PMC8793685)

2021

Xu, Z. et al. (2021) Clinical impact of molecular subtyping of pancreatic cancer. Frontiers in Cell and Developmental Biology, 9, 743908. (doi: 10.3389/fcell.2021.743908) (PMID:34805152) (PMCID:PMC8603393)

Al-Fatlawi, A. et al. (2021) Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers, 13(11), 2654. (doi: 10.3390/cancers13112654) (PMID:34071263) (PMCID:PMC8199344)

Lakis, V. et al. (2021) DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 4, 155. (doi: 10.1038/s42003-020-01469-0) (PMID:33536587) (PMCID:PMC7859232)

Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)

2020

McAllister, M., Constancio, V., Patek, S., Gan, H., Bailey, P. , Wheadon, H. , Underwood, M., Leung, H. and Edwards, J. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate, 80(15), pp. 1353-1364. (doi: 10.1002/pros.24064) (PMID:32846021)

Bailey, M. H. et al. (2020) Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 11, 4748. (doi: 10.1038/s41467-020-18151-y) (PMID:32958763) (PMCID:PMC7505971)

Li, C. H. et al. (2020) Sex differences in oncogenic mutational processes. Nature Communications, 11, 4330. (doi: 10.1038/s41467-020-17359-2) (PMID:32859912) (PMCID:PMC7455744)

Dreyer, S. B. et al. (2020) Precision oncology in surgery: patient selection for operable pancreatic cancer. Annals of Surgery, 272(2), pp. 366-376. (doi: 10.1097/SLA.0000000000003143) (PMID:32675551) (PMCID:PMC7373491)

Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)

Calabrese, C. et al. (2020) Genomic basis for RNA alterations in cancer. Nature, 578(7793), pp. 129-136. (doi: 10.1038/s41586-020-1970-0) (PMID:32025019) (PMCID:PMC7054216)

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, et al. (2020) Pan-cancer analysis of whole genomes. Nature, 578(7793), pp. 82-93. (doi: 10.1038/s41586-020-1969-6) (PMID:32025007) (PMCID:PMC7025898)

Jiao, W. et al. (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11, 728. (doi: 10.1038/s41467-019-13825-8) (PMID:32024849) (PMCID:PMC7002586)

Zhang, Y. et al. (2020) High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11, 736. (doi: 10.1038/s41467-019-13885-w) (PMID:32024823) (PMCID:PMC7002524)

Maniati, E. et al. (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Reports, 30(2), 525-540.e7. (doi: 10.1016/j.celrep.2019.12.034) (PMID:31940494) (PMCID:PMC6963791)

2019

Tandon, M. et al. (2019) Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Research, 79(20), pp. 5316-5327. (doi: 10.1158/0008-5472.CAN-18-3064) (PMID:31395607) (PMCID:PMC6801092)

Jackstadt, R. et al. (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell, 36(3), 319-336.e7. (doi: 10.1016/j.ccell.2019.08.003) (PMID:31526760) (PMCID:PMC6853173)

Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)

Collisson, E. A., Bailey, P. , Chang, D. K. and Biankin, A. V. (2019) Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 16, pp. 207-220. (doi: 10.1038/s41575-019-0109-y) (PMID:30718832)

2018

Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)

Veenstra, V.L. et al. (2018) ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis, 7, 87. (doi: 10.1038/s41389-018-0096-9) (PMID:30442938) (PMCID:PMC6237826)

Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)

Dreyer, S.B., Jamieson, N.B. , Upstill-Goddard, R., Bailey, P.J. , McKay, C.J., Australian Pancreatic Cancer Genome Initiative, , Biankin, A.V. and Chang, D.K. (2018) Defining the molecular pathology of pancreatic body and tail adenocarcinom. British Journal of Surgery, 105(2), e183-e191. (doi: 10.1002/bjs.10772) (PMID:29341146) (PMCID:PMC5817249)

2017

Balachandran, V. P. et al. (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 551, pp. 512-516. (doi: 10.1038/nature24462) (PMID:29132146) (PMCID:PMC6145146)

Scarpa, A. et al. (2017) Corrigendum: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 550(7677), p. 548. (doi: 10.1038/nature24026) (PMID:28953865)

Raphael, B. J. et al. (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. (doi: 10.1016/j.ccell.2017.07.007) (PMID:28810144) (PMCID:PMC5964983)

Feigin, M. E. et al. (2017) Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 49(6), pp. 825-833. (doi: 10.1038/ng.3861) (PMID:28481342) (PMCID:PMC5659388)

Johns, A. L. et al. (2017) Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 9, 41. (doi: 10.1186/s13073-017-0430-4) (PMID:28454591) (PMCID:PMC5408494)

Dreyer, S. B., Chang, D. K. , Bailey, P. and Biankin, A. V. (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clinical Cancer Research, 23(7), pp. 1638-1646. (doi: 10.1158/1078-0432.CCR-16-2411) (PMID:28373362)

Pishvaian, M. J., Biankin, A. V. , Bailey, P. , Chang, D. K. , Laheru, D., Wolfgang, C. L. and Brody, J. R. (2017) BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. British Journal of Cancer, 116, pp. 1021-1026. (doi: 10.1038/bjc.2017.40) (PMID:28291774)

Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi: 10.1038/nature21063) (PMID:28199314)

Vallejo, A. et al. (2017) An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 8, 14294. (doi: 10.1038/ncomms14294) (PMID:28220783) (PMCID:PMC5321758)

Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)

2016

Roy, N. et al. (2016) PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 30(24), pp. 2669-2683. (doi: 10.1101/gad.291021.116) (PMID:28087712)

Bailey, P. et al. (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 6, 35848. (doi: 10.1038/srep35848) (PMID:27762323) (PMCID:PMC5071896)

Milevskiy, M. J.G. et al. (2016) Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Human Molecular Genetics, 25(15), pp. 3269-3283. (doi: 10.1093/hmg/ddw177) (PMID:27378691) (PMCID:PMC5179926)

Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)

Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)

Gingras, M.-C. et al. (2016) Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Reports, 14(4), pp. 907-919. (doi: 10.1016/j.celrep.2015.12.005) (PMID:26804919) (PMCID:PMC4982376)

2015

Saunus, J. M. et al. (2015) Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 237(3), pp. 363-378. (doi: 10.1002/path.4583) (PMID:26172396)

Waddell, N. et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), pp. 495-501. (doi: 10.1038/nature14169) (PMID:25719666) (PMCID:PMC4523082)

Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)

Patch, A.-M. et al. (2015) Whole–genome characterization of chemoresistant ovarian cancer. Nature, 521(7553), pp. 489-494. (doi: 10.1038/nature14410) (PMID:26017449)

2014

Nones, K. et al. (2014) Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. International Journal of Cancer, 135(5), pp. 1110-1118. (doi: 10.1002/ijc.28765) (PMID:24500968)

Oh, T. G. et al. (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Molecular Endocrinology, 28(7), pp. 1166-1185. (doi: 10.1210/me.2013-1403) (PMID:24911119) (PMCID:PMC5414829)

Nones, K. et al. (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 5, 5224. (doi: 10.1038/ncomms6224) (PMID:25351503) (PMCID:PMC4596003)

This list was generated on Thu Nov 14 21:35:42 2024 GMT.
Jump to: Articles
Number of items: 57.

Articles

Lupo, F. et al. (2024) Axon guidance cue SEMA3A promotes the aggressive phenotype of basal-like PDAC. Gut, 73(8), pp. 1321-1335. (doi: 10.1136/gutjnl-2023-329807) (PMID:38670629)

De Sanctis, F. et al. (2024) Expression of the membrane tetraspanin claudin 18 on cancer cells promotes T lymphocyte infiltration and antitumor immunity in pancreatic cancer. Immunity, 57(6), 1378-1393.e14. (doi: 10.1016/j.immuni.2024.04.021) (PMID:38749447)

Zhou, X. et al. (2023) Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. Nature Cancer, 4, pp. 1362-1381. (doi: 10.1038/s43018-023-00628-6) (PMID:37679568) (PMCID:PMC10518256)

Bailey, P. et al. (2023) Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression. Nature Communications, 14, 5211. (doi: 10.1038/s41467-023-40822-9) (PMID:37626054) (PMCID:PMC10457401)

Krug, J. et al. (2023) N-glycosylation regulates intrinsic IFN-γ resistance in colorectal cancer: implications for immunotherapy. Gastroenterology, 164(3), 392-406.e5. (doi: 10.1053/j.gastro.2022.11.018) (PMID:36402190)

Bailey, P. , Zhou, X., An, J., Peccerella, T., Hu, K., Springfeld, C., Büchler, M. and Neoptolemos, J. P. (2023) Refining the treatment of pancreatic cancer from big data to improved individual survival. Function, 4(3), zqad011. (doi: 10.1093/function/zqad011) (PMID:37168490) (PMCID:PMC10165547)

Dings, M. P.G. et al. (2022) Estrogen-related receptor alpha drives mitochondrial biogenesis and resistance to neoadjuvant chemoradiation in esophageal cancer. Cell Reports Medicine, 3(11), 100802. (doi: 10.1016/j.xcrm.2022.100802) (PMID:36334593) (PMCID:PMC9729822)

D'Agosto, S. et al. (2022) Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene, 41(38), pp. 4371-4384. (doi: 10.1038/s41388-022-02432-5) (PMID:35963908) (PMCID:PMC9481460)

Zeng, S. et al. (2022) CDK7 inhibition augments response to multidrug chemotherapy in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 41, 241. (doi: 10.1186/s13046-022-02443-w) (PMID:35945614) (PMCID:PMC9364549)

Bijlsma, M. F., Bailey, P. J. and Stemmler, M. P. (2022) Editorial: translational insights into pancreatic ductal adenocarcinoma. Frontiers in Cell and Developmental Biology, 10, 875836. (doi: 10.3389/fcell.2022.875836) (PMID:35433705) (PMCID:PMC9012582)

Cattolico, C., Bailey, P. and Barry, S. T. (2022) Modulation of type I interferon responses to influence tumor-immune cross talk in PDAC. Frontiers in Cell and Developmental Biology, 10, 816517. (doi: 10.3389/fcell.2022.816517) (PMID:35273962) (PMCID:PMC8902310)

Schreyer, D., Neoptolemos, J. P., Barry, S. T. and Bailey, P. J. (2022) Deconstructing pancreatic cancer using next generation-omic technologies–from discovery to knowledge-guided platforms for better patient management. Frontiers in Cell and Developmental Biology, 9, 795735. (doi: 10.3389/fcell.2021.795735) (PMID:35096825) (PMCID:PMC8793685)

Xu, Z. et al. (2021) Clinical impact of molecular subtyping of pancreatic cancer. Frontiers in Cell and Developmental Biology, 9, 743908. (doi: 10.3389/fcell.2021.743908) (PMID:34805152) (PMCID:PMC8603393)

Al-Fatlawi, A. et al. (2021) Deep learning improves pancreatic cancer diagnosis using RNA-based variants. Cancers, 13(11), 2654. (doi: 10.3390/cancers13112654) (PMID:34071263) (PMCID:PMC8199344)

Lakis, V. et al. (2021) DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association. Communications Biology, 4, 155. (doi: 10.1038/s42003-020-01469-0) (PMID:33536587) (PMCID:PMC7859232)

Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)

McAllister, M., Constancio, V., Patek, S., Gan, H., Bailey, P. , Wheadon, H. , Underwood, M., Leung, H. and Edwards, J. (2020) Inflammatory infiltration is associated with AR expression and poor prognosis in hormone naïve prostate cancer. Prostate, 80(15), pp. 1353-1364. (doi: 10.1002/pros.24064) (PMID:32846021)

Bailey, M. H. et al. (2020) Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 11, 4748. (doi: 10.1038/s41467-020-18151-y) (PMID:32958763) (PMCID:PMC7505971)

Li, C. H. et al. (2020) Sex differences in oncogenic mutational processes. Nature Communications, 11, 4330. (doi: 10.1038/s41467-020-17359-2) (PMID:32859912) (PMCID:PMC7455744)

Dreyer, S. B. et al. (2020) Precision oncology in surgery: patient selection for operable pancreatic cancer. Annals of Surgery, 272(2), pp. 366-376. (doi: 10.1097/SLA.0000000000003143) (PMID:32675551) (PMCID:PMC7373491)

Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)

Calabrese, C. et al. (2020) Genomic basis for RNA alterations in cancer. Nature, 578(7793), pp. 129-136. (doi: 10.1038/s41586-020-1970-0) (PMID:32025019) (PMCID:PMC7054216)

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, et al. (2020) Pan-cancer analysis of whole genomes. Nature, 578(7793), pp. 82-93. (doi: 10.1038/s41586-020-1969-6) (PMID:32025007) (PMCID:PMC7025898)

Jiao, W. et al. (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nature Communications, 11, 728. (doi: 10.1038/s41467-019-13825-8) (PMID:32024849) (PMCID:PMC7002586)

Zhang, Y. et al. (2020) High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations. Nature Communications, 11, 736. (doi: 10.1038/s41467-019-13885-w) (PMID:32024823) (PMCID:PMC7002524)

Maniati, E. et al. (2020) Mouse ovarian cancer models recapitulate the human tumor microenvironment and patient response to treatment. Cell Reports, 30(2), 525-540.e7. (doi: 10.1016/j.celrep.2019.12.034) (PMID:31940494) (PMCID:PMC6963791)

Tandon, M. et al. (2019) Prolactin promotes fibrosis and pancreatic cancer progression. Cancer Research, 79(20), pp. 5316-5327. (doi: 10.1158/0008-5472.CAN-18-3064) (PMID:31395607) (PMCID:PMC6801092)

Jackstadt, R. et al. (2019) Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell, 36(3), 319-336.e7. (doi: 10.1016/j.ccell.2019.08.003) (PMID:31526760) (PMCID:PMC6853173)

Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)

Collisson, E. A., Bailey, P. , Chang, D. K. and Biankin, A. V. (2019) Molecular subtypes of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 16, pp. 207-220. (doi: 10.1038/s41575-019-0109-y) (PMID:30718832)

Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)

Veenstra, V.L. et al. (2018) ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis, 7, 87. (doi: 10.1038/s41389-018-0096-9) (PMID:30442938) (PMCID:PMC6237826)

Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)

Dreyer, S.B., Jamieson, N.B. , Upstill-Goddard, R., Bailey, P.J. , McKay, C.J., Australian Pancreatic Cancer Genome Initiative, , Biankin, A.V. and Chang, D.K. (2018) Defining the molecular pathology of pancreatic body and tail adenocarcinom. British Journal of Surgery, 105(2), e183-e191. (doi: 10.1002/bjs.10772) (PMID:29341146) (PMCID:PMC5817249)

Balachandran, V. P. et al. (2017) Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 551, pp. 512-516. (doi: 10.1038/nature24462) (PMID:29132146) (PMCID:PMC6145146)

Scarpa, A. et al. (2017) Corrigendum: Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 550(7677), p. 548. (doi: 10.1038/nature24026) (PMID:28953865)

Raphael, B. J. et al. (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell, 32(2), 185-203.e13. (doi: 10.1016/j.ccell.2017.07.007) (PMID:28810144) (PMCID:PMC5964983)

Feigin, M. E. et al. (2017) Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nature Genetics, 49(6), pp. 825-833. (doi: 10.1038/ng.3861) (PMID:28481342) (PMCID:PMC5659388)

Johns, A. L. et al. (2017) Lost in translation: returning germline genetic results in genome-scale cancer research. Genome Medicine, 9, 41. (doi: 10.1186/s13073-017-0430-4) (PMID:28454591) (PMCID:PMC5408494)

Dreyer, S. B., Chang, D. K. , Bailey, P. and Biankin, A. V. (2017) Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clinical Cancer Research, 23(7), pp. 1638-1646. (doi: 10.1158/1078-0432.CCR-16-2411) (PMID:28373362)

Pishvaian, M. J., Biankin, A. V. , Bailey, P. , Chang, D. K. , Laheru, D., Wolfgang, C. L. and Brody, J. R. (2017) BRCA2 secondary mutation-mediated resistance to platinum and PARP inhibitor-based therapy in pancreatic cancer. British Journal of Cancer, 116, pp. 1021-1026. (doi: 10.1038/bjc.2017.40) (PMID:28291774)

Scarpa, A. et al. (2017) Whole-genome landscape of pancreatic neuroendocrine tumours. Nature, 543(7643), pp. 65-71. (doi: 10.1038/nature21063) (PMID:28199314)

Vallejo, A. et al. (2017) An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nature Communications, 8, 14294. (doi: 10.1038/ncomms14294) (PMID:28220783) (PMCID:PMC5321758)

Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)

Roy, N. et al. (2016) PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance. Genes and Development, 30(24), pp. 2669-2683. (doi: 10.1101/gad.291021.116) (PMID:28087712)

Bailey, P. et al. (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Scientific Reports, 6, 35848. (doi: 10.1038/srep35848) (PMID:27762323) (PMCID:PMC5071896)

Milevskiy, M. J.G. et al. (2016) Long-range regulators of the lncRNA HOTAIR enhance its prognostic potential in breast cancer. Human Molecular Genetics, 25(15), pp. 3269-3283. (doi: 10.1093/hmg/ddw177) (PMID:27378691) (PMCID:PMC5179926)

Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)

Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)

Gingras, M.-C. et al. (2016) Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Reports, 14(4), pp. 907-919. (doi: 10.1016/j.celrep.2015.12.005) (PMID:26804919) (PMCID:PMC4982376)

Saunus, J. M. et al. (2015) Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. Journal of Pathology, 237(3), pp. 363-378. (doi: 10.1002/path.4583) (PMID:26172396)

Waddell, N. et al. (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518(7540), pp. 495-501. (doi: 10.1038/nature14169) (PMID:25719666) (PMCID:PMC4523082)

Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)

Patch, A.-M. et al. (2015) Whole–genome characterization of chemoresistant ovarian cancer. Nature, 521(7553), pp. 489-494. (doi: 10.1038/nature14410) (PMID:26017449)

Nones, K. et al. (2014) Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. International Journal of Cancer, 135(5), pp. 1110-1118. (doi: 10.1002/ijc.28765) (PMID:24500968)

Oh, T. G. et al. (2014) PRMT2 and RORγ expression are associated with breast cancer survival outcomes. Molecular Endocrinology, 28(7), pp. 1166-1185. (doi: 10.1210/me.2013-1403) (PMID:24911119) (PMCID:PMC5414829)

Nones, K. et al. (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nature Communications, 5, 5224. (doi: 10.1038/ncomms6224) (PMID:25351503) (PMCID:PMC4596003)

This list was generated on Thu Nov 14 21:35:42 2024 GMT.

Supervision

  • Cattolico, Carlotta
    Pharmacogenomic analysis of pancreatic cancer organoids – development of new immuno-oncology therapies for pancreatic cancer