Number of items: 60.
Articles
Bullock, S. et al.
(2024)
Artificial intelligence for collective intelligence: A national-scale research strategy.
Knowledge Engineering Review, 39,
e10.
(doi: 10.1017/S0269888924000110)
Pollack, R. et al.
(2024)
How could 20-minute neighbourhoods impact health and health inequalities? A policy scoping review.
BMC Public Health,
(Accepted for Publication)
Gamal, Y. , Elsenbroich, C. , Gilbert, N., Heppenstall, A. and Zia, K.
(2024)
A behavioural agent-based model for housing markets: impact of financial shocks in the UK.
Journal of Artificial Societies and Social Simulation, 27(4),
5.
(doi: 10.18564/jasss.5518)
Squires, H. et al.
(2024)
The PHEM-B toolbox of methods for incorporating the influences on Behaviour into Public Health Economic Models.
BMC Public Health, 24(1),
2794.
(doi: 10.1186/s12889-024-20225-1)
(PMID:39395958)
(PMCID:PMC11475213)
Olmez, S., Birks, D., Heppenstall, A. and Ge, J.
(2024)
Learning the rational choice perspective: a reinforcement learning approach to simulating offender behaviours in criminological agent-based models.
Computers, Environment and Urban Systems, 112,
102141.
(doi: 10.1016/j.compenvurbsys.2024.102141)
Olmez, S., Heppenstall, A. , Ge, J., Elsenbroich, C. and Birks, D.
(2024)
Mitigating housing market shocks: an agent-based reinforcement learning approach with implications for real-time decision support.
Journal of Simulation,
(doi: 10.1080/17477778.2024.2375446)
(Early Online Publication)
Kopasker, D. et al.
(2024)
Evaluating the influence of taxation and social security policies on psychological distress: a microsimulation study of the UK during the COVID-19 economic crisis.
Social Science and Medicine, 351,
116953.
(doi: 10.1016/j.socscimed.2024.116953)
(PMID:38759385)
Heppenstall, A. , Wang, M. , Demsar, U., Lemmens, R. and Yao, J.
(2024)
Preface.
AGILE: GIScience Series, 5,
1.
(doi: 10.5194/agile-giss-5-1-2024)
Brown, H. et al.
(2024)
Association between individual level characteristics and take-up of a Minimum Income Guarantee for Pensioners: Panel Data Analysis using data from the British Household Panel survey 1999–2002.
Social Sciences & Humanities Open, 9,
100847.
(doi: 10.1016/j.ssaho.2024.100847)
Wijermans, N., Scholz, G., Chappin, E., Heppenstall, A. , Filatova, T., Polhill, J. G., Semeniuk, C. and Stöppler, F.
(2023)
Agent decision-making: the elephant in the room: enabling the justification of decision model fit in social-environmental models.
Environmental Modelling and Software, 170,
105850.
(doi: 10.1016/j.envsoft.2023.105850)
Griffiths, C. et al.
(2023)
A complex systems approach to obesity: a transdisciplinary framework for action.
Perspectives in Public Health, 143(6),
pp. 305-309.
(doi: 10.1177/17579139231180761)
(PMID:37395317)
(PMCID:PMC10683338)
Antosz, P., Birks, D., Edmonds, B., Heppenstall, A. , Meyer, R., Polhill, J. G., O’Sullivan, D. and Wijermans, N.
(2023)
What do you want theory for? A pragmatic analysis of the roles of “theory” in agent-based modelling.
Environmental Modelling and Software, 168,
105802.
(doi: 10.1016/j.envsoft.2023.105802)
Höhn, A. et al.
(2023)
Systems science methods in public health: what can they contribute to our understanding of and response to the cost-of-living crisis?
Journal of Epidemiology and Community Health, 77(9),
pp. 610-616.
(doi: 10.1136/jech-2023-220435)
(PMID:37328262)
(PMCID:PMC10423532)
An, L. et al.
(2023)
Modeling agent decision and behavior in the light of data science and artificial intelligence.
Environmental Modelling and Software, 166,
105713.
(doi: 10.1016/j.envsoft.2023.105713)
Franklin, R. S. et al.
(2023)
Making space in geographical analysis.
Geographical Analysis, 55(2),
pp. 325-341.
(doi: 10.1111/gean.12325)
Sucharyna Thomas, L., Wickham-Jones, C. R. and Heppenstall, A. J.
(2022)
Combining agent-based modelling and geographical information systems to create a new approach for modelling movement dynamics: a case study of Mesolithic Orkney.
Open Archaeology, 8,
pp. 987-1009.
(doi: 10.1515/opar-2022-0257)
Boyd, J., Wilson, R., Elsenbroich, C. , Heppenstall, A. and Meier, P.
(2022)
Agent-based modelling of health inequalities following the complexity turn in public health: a systematic review.
International Journal of Environmental Research and Public Health, 19(24),
16807.
(doi: 10.3390/ijerph192416807)
(PMID:36554687)
(PMCID:PMC9779847)
Wallace, R., Franklin, R., Grant-Muller, S., Heppenstall, A. and Houlden, V.
(2022)
Estimating the social and spatial impacts of Covid mitigation strategies in United Kingdom regions: synthetic data and dashboards.
Cambridge Journal of Regions, Economy and Society, 15(3),
pp. 683-702.
(doi: 10.1093/cjres/rsac019)
Ternes, P., Ward, J. A., Heppenstall, A. , Kumar, V., Kieu, L.-M. and Malleson, N.
(2022)
Data assimilation and agent-based modelling: towards the incorporation of categorical agent parameters.
Open Research Europe, 1,
131.
(doi: 10.12688/openreseurope.14144.2)
Olmez, S., Thompson, J., Marfleet, E., Suchak, K., Heppenstall, A. , Manley, E., Whipp, A. and Vidanaarachchi, R.
(2022)
An agent-based model of heterogeneous driver behaviour and its impact on energy consumption and costs in urban space.
Energies, 15(11),
4031.
(doi: 10.3390/en15114031)
Urquhart, R., Newing, A., Hood, N. and Heppenstall, A.
(2022)
Last-mile capacity constraints in online grocery fulfilment in Great Britain.
Journal of Theoretical and Applied Electronic Commerce Research, 17(2),
pp. 636-651.
(doi: 10.3390/jtaer17020033)
Arnold, K. F., Gilthorpe, M. S., Alwan, N. A., Heppenstall, A. J. , Tomova, G. D., McKee, M. and Tennant, P. W.G.
(2022)
Estimating the effects of lockdown timing on COVID-19 cases and deaths in England: a counterfactual modelling study.
PLoS ONE, 17(4),
e0263432.
(doi: 10.1371/journal.pone.0263432)
(PMID:35421094)
(PMCID:PMC9009677)
Gadd, S. C., Comber, A., Gilthorpe, M. S., Suchak, K. and Heppenstall, A. J.
(2022)
Simplifying the interpretation of continuous time models for spatio-temporal networks.
Journal of Geographical Systems, 24(2),
pp. 171-198.
(doi: 10.1007/s10109-020-00345-z)
McCulloch, J., Ge, J., Ward, J. A., Heppenstall, A. , Polhill, J. G. and Malleson, N.
(2022)
Calibrating agent-based models using uncertainty quantification methods.
Journal of Artificial Societies and Social Simulation, 25(2),
1.
(doi: 10.18564/jasss.4791)
Wu, G., Heppenstall, A. , Meier, P. , Purshouse, R. and Lomax, N.
(2022)
A synthetic population dataset for estimating small area health and socio-economic outcomes in Great Britain.
Scientific Data, 9,
19.
(doi: 10.1038/s41597-022-01124-9)
(PMID:35058471)
(PMCID:PMC8776798)
Gadd, S. C., Comber, A., Tennant, P., Gilthorpe, M. S. and Heppenstall, A. J.
(2022)
The utility of multilevel models for continuous-time feature selection of spatio-temporal networks.
Computers, Environment and Urban Systems, 91,
101728.
(doi: 10.1016/j.compenvurbsys.2021.101728)
Yang, Y., Beecham, R., Heppenstall, A. , Turner, A. and Comber, A.
(2022)
Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: a case study of four London Tube strikes.
Journal of Transport Geography, 98,
103255.
(doi: 10.1016/j.jtrangeo.2021.103255)
Malleson, N., Birkin, M., Birks, D., Ge, J., Heppenstall, A. , Manley, E., McCulloch, J. and Ternes, P.
(2022)
Agent-based modelling for urban analytics: state of the art and challenges.
AI Communications, 35(4),
pp. 393-406.
(doi: 10.3233/AIC-220114)
An, L. et al.
(2021)
Challenges, tasks, and opportunities in modeling agent-based complex systems.
Ecological Modelling, 457,
109685.
(doi: 10.1016/j.ecolmodel.2021.109685)
Smith, D. M., Heppenstall, A. and Campbell, M.
(2021)
Estimating health over space and time: a review of spatial microsimulation applied to public health.
J - An Open Access Journal of Multidisciplinary Science, 4(2),
pp. 182-192.
(doi: 10.3390/j4020015)
Olmez, S., Douglas-Mann, L., Manley, E., Suchak, K., Heppenstall, A. , Birks, D. and Whipp, A.
(2021)
Exploring the impact of driver adherence to speed limits and the interdependence of roadside collisions in an urban environment: an agent-based modelling approach.
Applied Sciences, 11(12),
5336.
(doi: 10.3390/app11125336)
Whipp, A., Malleson, N., Ward, J. and Heppenstall, A.
(2021)
Estimates of the ambient population: assessing the utility of conventional and novel data sources.
ISPRS International Journal of Geo-Information, 10(3),
131.
(doi: 10.3390/ijgi10030131)
Heppenstall, A. , Crooks, A., Malleson, N., Manley, E., Ge, J. and Batty, M.
(2021)
Future developments in geographical agent‐based models: challenges and opportunities.
Geographical Analysis, 53(1),
pp. 76-91.
(doi: 10.1111/gean.12267)
(PMID:33678813)
(PMCID:PMC7898830)
Roxburgh, N., Stringer, L. C., Evans, A., GC, R. K., Malleson, N. and Heppenstall, A. J.
(2021)
Impacts of multiple stressors on mountain communities: Insights from an agent-based model of a Nepalese village.
Global Environmental Change, 66,
102203.
(doi: 10.1016/j.gloenvcha.2020.102203)
Roxburgh, N., Evans, A., GC, R. K., Malleson, N., Heppenstall, A. and Stringer, L.
(2021)
An empirically informed agent-based model of a Nepalese smallholder village.
MethodsX, 8,
101276.
(doi: 10.1016/j.mex.2021.101276)
(PMID:34434796)
(PMCID:PMC8374244)
Yang, Y., Heppenstall, A. , Turner, A. and Comber, A.
(2020)
Using graph structural information about flows to enhance short-term demand prediction in bike-sharing systems.
Computers, Environment and Urban Systems, 83,
101521.
(doi: 10.1016/j.compenvurbsys.2020.101521)
Hood, N., Urquhart, R., Newing, A. and Heppenstall, A.
(2020)
Sociodemographic and spatial disaggregation of e-commerce channel use in the grocery market in Great Britain.
Journal of Retailing and Consumer Services, 55,
102076.
(doi: 10.1016/j.jretconser.2020.102076)
Malleson, N., Minors, K., Kieu, L.-M., Ward, J. A., West, A. and Heppenstall, A.
(2020)
Simulating crowds in real time with agent-based modelling and a particle filter.
Journal of Artificial Societies and Social Simulation, 23(3),
p. 3.
(doi: 10.18564/jasss.4266)
Olner, D., Mitchell, G., Heppenstall, A. and Pryce, G.
(2020)
The spatial economics of energy justice: modelling the trade impacts of increased transport costs in a low carbon transition and the implications for UK regional inequality.
Energy Policy, 140,
111378.
(doi: 10.1016/j.enpol.2020.111378)
Owen, A. and Heppenstall, A.
(2020)
Making the case for simulation: Unlocking carbon reduction through simulation of individual ‘middle actor’ behaviour.
Environment and Planning B: Urban Analytics and City Science, 47(3),
pp. 457-472.
(doi: 10.1177/2399808318784597)
Xiang, L., Stillwell, J., Burns, L. and Heppenstall, A.
(2020)
Measuring and assessing regional education inequalities in China under changing policy regimes.
Applied Spatial Analysis and Policy, 13(1),
pp. 91-112.
(doi: 10.1007/s12061-019-09293-8)
Manson, S. et al.
(2020)
Methodological issues of spatial agent-based models.
Journal of Artificial Societies and Social Simulation, 23(1),
3.
(doi: 10.18564/jasss.4174)
Kieu, L.-M., Malleson, N. and Heppenstall, A.
(2020)
Dealing with uncertainty in agent-based models for short-term predictions.
Royal Society Open Science, 7(1),
191074.
(doi: 10.1098/rsos.191074)
(PMID:32218939)
(PMCID:PMC7029931)
Levine, S. Z., Gadd, S. C., Tennant, P. W. G., Heppenstall, A. J. , Boehnke, J. R. and Gilthorpe, M. S.
(2019)
Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research.
PLoS ONE, 14(12),
e0225217.
(doi: 10.1371/journal.pone.0225217)
(PMID:31800576)
(PMCID:PMC6892534)
Meier, P. et al.
(2019)
The SIPHER Consortium: introducing the new UK hub for systems science in public health and health economic research.
Wellcome Open Research, 4,
174.
(doi: 10.12688/wellcomeopenres.15534.1)
(PMID:31815191)
(PMCID:PMC6880277)
Yang, Y., Heppenstall, A. , Turner, A. and Comber, A.
(2019)
A spatiotemporal and graph-based analysis of dockless bike sharing patterns to understand urban flows over the last mile.
Computers, Environment and Urban Systems, 77,
101361.
(doi: 10.1016/j.compenvurbsys.2019.101361)
Yang, Y., Heppenstall, A. , Turner, A. and Comber, A.
(2019)
Who, where, why and when? Using smart card and social media data to understand urban mobility.
ISPRS International Journal of Geo-Information, 8(6),
271.
(doi: 10.3390/ijgi8060271)
Arnold, K.F., Ellison, G.T.H., Gadd, S., Textor, J., Tennant, P.W.G., Heppenstall, A. and Gilthorpe, M.S.
(2019)
Adjustment for time-invariant and time-varying confounders in ‘unexplained residuals’ models for longitudinal data within a causal framework and associated challenges.
Statistical Methods in Medical Research, 28(5),
pp. 1347-1364.
(doi: 10.1177/0962280218756158)
(PMID:29451093)
(PMCID:PMC6484949)
Heppenstall, A. and Crooks, A.
(2019)
Guest editorial for spatial agent-based models: current practices and future trends.
GeoInformatica, 23(2),
pp. 163-167.
(doi: 10.1007/s10707-019-00349-y)
Gulma, U. L., Evans, A., Heppenstall, A. and Malleson, N.
(2019)
Diversity and burglary: Do community differences matter?
Transactions in GIS, 23(2),
pp. 181-202.
(doi: 10.1111/tgis.12511)
Alotaibi, N. I., Evans, A. J., Heppenstall, A. J. and Malleson, N. S.
(2019)
How well does Western environmental theory explain crime in the Arabian context? The case study of Riyadh, Saudi Arabia.
International Criminal Justice Review, 29(1),
pp. 5-32.
(doi: 10.1177/1057567717709497)
Book Sections
Crooks, A., Heppenstall, A. , Malleson, N. and Manley, E.
(2021)
Agent-based modeling and the city: A gallery of applications.
In: Shi, W., Goodchild, M. F., Batty, M., Kwan, M.-P. and Zhang, A. (eds.)
Urban Informatics.
Series: Urban book series.
Springer, pp. 885-910.
ISBN 9789811589836
(doi: 10.1007/978-981-15-8983-6_46)
Edited Books
Wolf, L. J., Harris, R. and Heppenstall, A. (Eds.)
(2024)
A Research Agenda for Spatial Analysis.
Series: Elgar Research Agendas.
Edward Elgar.
ISBN 9781802203226
Edited Journals
Heppenstall, A. , Wang, M. , Demsar, U., Lemmens, R. and Yao, J. (Eds.)
(2024)
27th AGILE Conference on Geographic Information Science “Geographic Information Science for a Sustainable Future”.
AGILE: GIScience Series.
5 [Edited Journal]
Heppenstall, A. and Crooks, A. (Eds.)
(2019)
Special Issue on Spatial Agent-Based Models: Current Practices and Future Trends.
Geoinformatica.
23(2) [Edited Journal]
Research Reports or Papers
Lomax, N., Archer, L., Clay, R., Fergie, G. , Heppenstall, A. , Meier, P. and Winterbottom, J.
(2024)
Modelling the Scottish Child Poverty Targets: Estimating the Effect on Adult Mental Health.
Project Report.
SIPHER Consortium.
(doi: 10.36399/gla.pubs.337651).
Conference Proceedings
Feng, Z. , Xian, X., Gamalaldin, Y. , Zhao, Q. and Heppenstall, A.
(2024)
Optimizing the Locations of Electric Vehicle Charging Stations in Georgia, USA.
In: 32nd ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL '24), Atlanta, GA, USA, 29 Oct - 01 Nov 2024,
pp. 733-736.
ISBN 9798400711077
(doi: 10.1145/3678717.3700831)
Heppenstall, A. , Polhill, J. G., Batty, M., Hare, M., Salt, D. and Milton, R.
(2023)
Exascale Agent-Based Modelling for Policy Evaluation in Real-Time (ExAMPLER).
In: 12th International Conference on Geographic Information Science (GIScience 2023), Leeds, UK, 12-15 Sept 2023,
38:1-38:5.
ISBN 9783959772884
(doi: 10.4230/LIPIcs.GIScience.2023.38)
Feng, Z. , Zhao, Q. and Heppenstall, A.
(2023)
Understanding the Complex Behaviours of Electric Vehicle Drivers with Agent-Based Models in Glasgow.
In: 12th International Conference on Geographic Information Science (GIScience 2023), Leeds, UK, 14-19 Sept 2023,
29:1-29:6.
ISBN 9783959772884
(doi: 10.4230/LIPIcs.GIScience.2023.29)
Website
Lewis, D., Comrie, E., Hoehn, A. , Lomax, N., Heppenstall, A. , Purshouse, R., Zia, K. and Meier, P.
(2024)
SIPHER Synthetic Population for Individuals in Great Britain (2019-2021) - Interactive R-Shiny Dashboard.
[Website]
This list was generated on Mon Jan 20 20:42:14 2025 GMT.