Dr Kate Haining

  • Lecturer (Psychology & Neuroscience Education Hub)

email: Kate.Haining@glasgow.ac.uk
pronouns: She/her/hers

518b, Boyd Orr Building, Glasgow

Import to contacts

Research interests

I am a lecturer in the School of Psychology and Neuroscience. I am interested in mental health and wellbeing (particularly psychosis), cognitive psychology and research methods. I specialise in quantitative research.

In research roles, I have worked with schizophrenia patients and people at clinical high-risk for psychosis (CHR-P) to better understand the utility of innovative E-mental health tools and the neural correlates of auditory and visual processing.

My PhD research investigated predictors of clinical and functional outcome in individuals at CHR-P and those with first-episode psychosis (FEP). I also designed and implemented a computerised cognitive training intervention, exploring the impact on cognition and neural circuit function in CHR-P and FEP individuals, as assessed via magnetoencephalography (MEG) and magnetic resonance imaging (MRI).

Publications

List by: Type | Date

Jump to: 2024 | 2022 | 2021 | 2020
Number of items: 6.

2024

Haining, K., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schultze-Lutter, F., Schwannauer, M. and Uhlhaas, P. J. (2024) Clinical and functional outcomes of community-recruited individuals at clinical high-risk for psychosis: results from the Youth Mental Health Risk and Resilience Study (YouR-Study). Schizophrenia Bulletin Open, 5(1), sgae029. (doi: 10.1093/schizbullopen/sgae029) (PMID:39610874) (PMCID:PMC11604080)

2022

Haining, K. et al. (2022) Computerised cognitive training during early-stage psychosis improves cognitive deficits and gamma-band oscillations: a pilot study. Schizophrenia Research, 243, pp. 217-219. (doi: 10.1016/j.schres.2022.04.001) (PMID:35461044)

Haining, K., Gajwani, R. , Gross, J. , Gumley, A. I. , Ince, R. A.A. , Lawrie, S. M., Schultze-Lutter, F., Schwannauer, M. and Uhlhaas, P. J. (2022) Characterising cognitive heterogeneity in individuals at clinical high-risk for psychosis: a cluster analysis with clinical and functional outcome prediction. European Archives of Psychiatry and Clinical Neuroscience, 272(3), pp. 437-448. (doi: 10.1007/s00406-021-01315-2) (PMID:34401957)

2021

Haining, K., Karagiorgou, O., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2021) Prevalence and predictors of suicidality and non-suicidal self-harm among individuals at clinical high-risk for psychosis: results from a community-recruited sample. Early Intervention in Psychiatry, 15(5), pp. 1256-1265. (doi: 10.1111/eip.13075) (PMID:33372364) (PMCID:PMC8451831)

Haining, K., Brunner, G., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2021) The relationship between cognitive deficits and impaired short-term functional outcome in clinical high-risk for psychosis participants: a machine learning and modelling approach. Schizophrenia Research, 231, pp. 24-31. (doi: 10.1016/j.schres.2021.02.019) (PMID:33744682)

2020

Haining, K., Matrunola, C., Mitchell, L., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2020) Neuropsychological deficits in participants at clinical high risk for psychosis recruited from the community: relationships to functioning and clinical symptoms. Psychological Medicine, 50(1), pp. 77-85. (doi: 10.1017/S0033291718003975) (PMID:30862319)

This list was generated on Thu Dec 19 00:09:27 2024 GMT.
Jump to: Articles
Number of items: 6.

Articles

Haining, K., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schultze-Lutter, F., Schwannauer, M. and Uhlhaas, P. J. (2024) Clinical and functional outcomes of community-recruited individuals at clinical high-risk for psychosis: results from the Youth Mental Health Risk and Resilience Study (YouR-Study). Schizophrenia Bulletin Open, 5(1), sgae029. (doi: 10.1093/schizbullopen/sgae029) (PMID:39610874) (PMCID:PMC11604080)

Haining, K. et al. (2022) Computerised cognitive training during early-stage psychosis improves cognitive deficits and gamma-band oscillations: a pilot study. Schizophrenia Research, 243, pp. 217-219. (doi: 10.1016/j.schres.2022.04.001) (PMID:35461044)

Haining, K., Gajwani, R. , Gross, J. , Gumley, A. I. , Ince, R. A.A. , Lawrie, S. M., Schultze-Lutter, F., Schwannauer, M. and Uhlhaas, P. J. (2022) Characterising cognitive heterogeneity in individuals at clinical high-risk for psychosis: a cluster analysis with clinical and functional outcome prediction. European Archives of Psychiatry and Clinical Neuroscience, 272(3), pp. 437-448. (doi: 10.1007/s00406-021-01315-2) (PMID:34401957)

Haining, K., Karagiorgou, O., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2021) Prevalence and predictors of suicidality and non-suicidal self-harm among individuals at clinical high-risk for psychosis: results from a community-recruited sample. Early Intervention in Psychiatry, 15(5), pp. 1256-1265. (doi: 10.1111/eip.13075) (PMID:33372364) (PMCID:PMC8451831)

Haining, K., Brunner, G., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2021) The relationship between cognitive deficits and impaired short-term functional outcome in clinical high-risk for psychosis participants: a machine learning and modelling approach. Schizophrenia Research, 231, pp. 24-31. (doi: 10.1016/j.schres.2021.02.019) (PMID:33744682)

Haining, K., Matrunola, C., Mitchell, L., Gajwani, R. , Gross, J. , Gumley, A. I. , Lawrie, S. M., Schwannauer, M., Schultze-Lutter, F. and Uhlhaas, P. J. (2020) Neuropsychological deficits in participants at clinical high risk for psychosis recruited from the community: relationships to functioning and clinical symptoms. Psychological Medicine, 50(1), pp. 77-85. (doi: 10.1017/S0033291718003975) (PMID:30862319)

This list was generated on Thu Dec 19 00:09:27 2024 GMT.

Supervision