Dr Rachael Boyd

  • Lecturer (Mathematics)

email: Rachael.Boyd@glasgow.ac.uk
pronouns: She/her/hers

School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ

Import to contacts

ORCID iDhttps://orcid.org/0000-0002-4544-3177

Biography

Research interests

I am interested in developing new methods to study algebraic objects through the lenses of geometry and topology. Some topics I'm interested in are Artin and Coxeter groups and monoids, classifying spaces of groups and group homology, topological invariants of diagram algebras, low dimensional embedding spaces, and diffeomorphism groups of 3-manifolds.

Research groups

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021 | 2020
Number of items: 9.

2024

Boyd, R. and Hepworth, R. (2024) The homology of the Temperley-Lieb algebras. Geometry and Topology, 28(3), pp. 1437-1499. (doi: 10.2140/gt.2024.28.1437)

Boyd, R. , Hepworth, R. and Patzt, P. (2024) The homology of the partition algebras. Pacific Journal of Mathematics, 327(1), pp. 1-27. (doi: 10.2140/pjm.2023.327.1)

Boyd, R. , Charney, R., Morris-Wright, R. and Rees, S. (2024) The Artin monoid Cayley graph. Journal of Combinatorial Algebra, (doi: 10.4171/JCA/85) (Early Online Publication)

2023

Boyd, R. , Kastenholz, T. and Mutanguha, J. P. (2023) The minimal genus problem for right angled Artin groups. Geometriae Dedicata, 217(5), 93. (doi: 10.1007/s10711-023-00815-w)

2022

Boyd, R. , Charney, R. and Morris-Wright, R. (2022) A Deligne complex for Artin monoids. Journal of Algebra, 607(B), pp. 53-78. (doi: 10.1016/j.jalgebra.2021.03.015)

2021

Boyd, R. , Hepworth, R. and Patzt, P. (2021) The homology of the Brauer algebras. Selecta Mathematica, 27(5), 85. (doi: 10.1007/s00029-021-00697-4)

Boyd, R. and Hepworth, R. (2021) Combinatorics of injective words for Temperley-Lieb algebras. Journal of Combinatorial Theory, Series A, 181, 105446. (doi: 10.1016/j.jcta.2021.105446)

2020

Boyd, R. (2020) The low-dimensional homology of finite-rank Coxeter groups. Algebraic and Geometric Topology, 20(5), pp. 2609-2655. (doi: 10.2140/agt.2020.20.2609)

Boyd, R. (2020) Homological stability for Artin monoids. Proceedings of the London Mathematical Society, 121(3), pp. 537-583. (doi: 10.1112/plms.12335)

This list was generated on Tue Jan 21 20:22:02 2025 GMT.
Jump to: Articles
Number of items: 9.

Articles

Boyd, R. and Hepworth, R. (2024) The homology of the Temperley-Lieb algebras. Geometry and Topology, 28(3), pp. 1437-1499. (doi: 10.2140/gt.2024.28.1437)

Boyd, R. , Hepworth, R. and Patzt, P. (2024) The homology of the partition algebras. Pacific Journal of Mathematics, 327(1), pp. 1-27. (doi: 10.2140/pjm.2023.327.1)

Boyd, R. , Charney, R., Morris-Wright, R. and Rees, S. (2024) The Artin monoid Cayley graph. Journal of Combinatorial Algebra, (doi: 10.4171/JCA/85) (Early Online Publication)

Boyd, R. , Kastenholz, T. and Mutanguha, J. P. (2023) The minimal genus problem for right angled Artin groups. Geometriae Dedicata, 217(5), 93. (doi: 10.1007/s10711-023-00815-w)

Boyd, R. , Charney, R. and Morris-Wright, R. (2022) A Deligne complex for Artin monoids. Journal of Algebra, 607(B), pp. 53-78. (doi: 10.1016/j.jalgebra.2021.03.015)

Boyd, R. , Hepworth, R. and Patzt, P. (2021) The homology of the Brauer algebras. Selecta Mathematica, 27(5), 85. (doi: 10.1007/s00029-021-00697-4)

Boyd, R. and Hepworth, R. (2021) Combinatorics of injective words for Temperley-Lieb algebras. Journal of Combinatorial Theory, Series A, 181, 105446. (doi: 10.1016/j.jcta.2021.105446)

Boyd, R. (2020) The low-dimensional homology of finite-rank Coxeter groups. Algebraic and Geometric Topology, 20(5), pp. 2609-2655. (doi: 10.2140/agt.2020.20.2609)

Boyd, R. (2020) Homological stability for Artin monoids. Proceedings of the London Mathematical Society, 121(3), pp. 537-583. (doi: 10.1112/plms.12335)

This list was generated on Tue Jan 21 20:22:02 2025 GMT.

Grants

https://gow.epsrc.ukri.org/NGBOViewPerson.aspx?PersonId=-797171

Supervision

Teaching

MATHS5048: 5M: Further Topics in Group Theory