Fast Inference in Nonlinear Dynamical Systems using Gradient Matching

Mu Niu (University of Glasgow)

Friday 3rd June, 2016 15:00-16:00 Maths 204

Abstract

Parameter inference in mechanistic models of coupled differential equations is a topical problem. We propose a new method based on kernel ridge regression and gradient matching, and an objective function that simultaneously encourages goodness of fit and penalises inconsistencies with the differential equations. Fast minimisation is achieved by exploiting partial convexity inherent in this function, and setting up an iterative algorithm in the vein of the EM algorithm. An evaluation of the proposed method on various benchmark data suggests that it compares favourably with state-of-the-art alternatives.
 

Add to your calendar

Download event information as iCalendar file (only this event)