Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium
Prof. Francesco dell'Isola (Università La Sapienza, Rome)
Wednesday 23rd March, 2016 14:00-15:00 Maths 417
Abstract
The aim of this talk is to describe a computationally efficient and predictive model for the class of systems that we call “pantographic structures”. The interest in these materials was increased by the possibilities opened by the diffusion of technology of 3D printing. They can be regarded, once choosing a suitable length scale, as families of beams (also called fibres) interconnected each other by pivots and undergoing large displacements and large deformations. There are, however, relatively few “ready-to-use” results in the literature of non-linear beam theory.We consider a discrete spring model for extensible beams and propose a heuristic homogenisation technique of the kind first used by Piola to formulate a continuum fully non-linear beam model. The homogenised energy which we obtain has some peculiar and interesting features which we start to describe by solving numerically some exemplary deformation problems. Furthermore, we consider pantographic structures, find the corresponding homogenised second gradient deformation energies and study some planar problems. Numerical solutions for these 2D problems are obtained via minimisation of energy and are compared with some experimental measurements, in which elongation phenomena cannot be neglected.
Add to your calendar
Download event information as iCalendar file (only this event)