Reduced order modelling in CFD: state of the art, perspectives and challenges

Prof Gianluigi Rozza (Scuola Internazionale Superiore di Studi Avanzati)

Friday 10th May 11:00-12:00 Maths 311B

Abstract

The state of the art of Reduced Order Methods (ROM) for parametric Partial Differential Equations (PDEs) is provided. We focus on some perspectives in their current trends and developments, with a special interest in parametric problems arising in offline-online Computational Fluid Dynamics (CFD). Efficient parametrisations (random inputs, geometry, physics) are very important to be able to properly address an offline-online decoupling of the computational procedures and to allow competitive computational performances. Current ROM developments in CFD include: (i) a better use of stable high fidelity methods, to enhance the quality of the reduced model too, also in presence of bifurcations and loss of uniqueness of the solution itself, (ii) capability to  incorporate turbulence models and to increase the Reynolds number; (iii) more efficient sampling techniques to reduce the number of the basis functions, retained as snapshots, as well as the dimension of online systems; (iv) the improvements of the certification of accuracy, established on residual based error bounds, and of the stability factors, as well as (v) the guarantee of the stability of the approximation with proper space enrichments. Last, but not least, the use of automatic learning.  All the previous aspects are quite relevant -- and often challenging -- in CFD problems to focus on real time simulations for complex parametric industrial, environmental and biomedical flow problems, or even in a control flow setting with data assimilation and uncertainty quantification. Some model problems will be illustrated by focusing on few benchmark study cases, for example on simple fluid-structure interaction problems and on shape optimisation, as well as on some industrial and environmental problems of interest.

Add to your calendar

Download event information as iCalendar file (only this event)