Knotted Surfaces in 4-manifolds and Distances Between Them
Oliver Singh (Durham University)
Monday 25th January, 2021 16:00-17:00 Online
Abstract
I will discuss knotted surfaces, isotopy classes of embedded surfaces in a given 4-manifold, and will define two notions of distance between them. These distances are integer-valued and are defined topologically: one in terms of regular homotopy; another in terms of stabilisation, a form of embedded surgery. I will outline a proof of an inequality between these distances; the proof is constructive and draws upon ideas pioneered by Gabai in the proof of the 4-dimensional light bulb theorem.
The talk will be preceded by a tea time at 3:45pm. The Zoom link for the seminar is https://uofglasgow.zoom.us/j/91412568415 and the passcode is the genus of the two-dimensional sphere (4 letters, all lowercase).
If you would like to subscribe to the seminar mailing list, go to https://outlook.office365.com/people/, search "Geometry & Topology" and click "Join group".
Add to your calendar
Download event information as iCalendar file (only this event)