Equivariant higher twisted K-theory of SU(n) via exponential functors
Ulrich Pennig (Cardiff University)
Thursday 24th October, 2019 16:00-17:00 Maths 311B
Abstract
Twisted K-theory is a variant of topological K-theory that allows local coefficient systems called twists. For spaces and twists equipped with an action by a group, equivariant twisted K-theory provides an even finer invariant. Equivariant twists over Lie groups gained increasing importance in the subject due to a result by Freed, Hopkins and Teleman that relates the corresponding K-groups to the Verlinde ring of the associated loop group. From the point of view of homotopy theory only a small subgroup of all possible twists is considered in classical treatments of twisted K-theory. In this talk I will discuss an operator-algebraic model for equivariant higher (i.e. non-classical) twists over SU(n) induced by exponential functors on the category of vector spaces and isomorphisms. These twists are represented by Fell bundles and the C*-algebraic picture allows a full computation of the associated K-groups at least in low dimensions. I will also draw some parallels of our results with the FHT theorem.
This is joint work with D. Evans.
Add to your calendar
Download event information as iCalendar file (only this event)