Professor Matthias Marti

  • Professor (Parasitology)

Research interests

Unravelling mechanisms of stage conversion in malaria parasites

Malaria parasites have co-evolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. It is proposed that this is because the parasites can adapt to changes within their host and between hosts, thus regulating investment into growth versus transmission. Studies in the major human malaria parasite, P. falciparum, show that such adaptation can be regulated epigenetically.

However, there is also increasing evidence for hardwired factors (i.e., genes) that determine differences in the investment into growth versus transmission between parasite strains. The work proposed here aims to identify these genetic determinants and thus define the parasite pathways that regulate the balance between growth and transmission in response to environmental cues.

  • Funding: Wellcome Trust (UK)
  • Collaborators: Thomas Otto (University of Glasgow, Glasgow, UK), Ashley Vaughan (Seattle Children’s, Seattle, USA), John Adams (University of South Florida, Tampa, USA)

 

Malaria: A cell atlas of host parasite interactions in the haematopoietic niche

Malaria is a major life-threatening infectious disease in humans, with over 400,000 fatalities per year. Whereas Plasmodium falciparum dominates in sub-Saharan Africa, Plasmodium vivax is responsible for most cases in many regions of Asia and South America. The past decade has seen a drastic reduction in malaria cases and deaths worldwide, however drug resistance in both parasite and vector species is spreading.

We have identified bone marrow and spleen as a major reservoir for parasite infection and the only site of transmission stage development in P. falciparum and P. vivax. Parasites accumulate and develop in particular in the reticulocyte-rich extravascular environments, i.e., the hematopoietic niche of these organs. This discovery establishes a new paradigm in parasite biology, similar to the identification of the liver cycle in 1948. Infection of this niche contributes to clinical manifestations such as anaemia, thrombocytopenia and splenomegaly, and it has major effects on the host immune response.

We demonstrate that the hematopoietic niche is the major parasite reservoir in reticulocyte-restricted species such as Plasmodium vivax and P. berghei. In fact, many known features are conserved across Plasmodium. I propose an ambitious research programme combining genetics, single cell transcriptomics, multi-parameter tissue imaging (CyTOF), and in vivo and ex vivo phenotyping to establish a functional and spatial map of the host parasite interplay in the hematopoietic niche. Performing experiments in samples directly sourced from human infection provides a direct path to translation, while parallel in vitro investigations enable mechanistic analysis.

Our study has implications for translation, including diagnostics and interventions to block transmission, reducing severe disease, and modifying the immune response.

  • Funding: Schweizerischer Nationalfonds
  • Collaborators: Christopher Moxon (Malawi-Liverpool Wellcome Clinical Research, Kamuzu University of Health Sciences, Blantyre, Malawi and University of Glasgow, UK), Thomas Otto (University of Glasgow, Glasgow, UK), Kevin Couper (University of Manchester, Manchester, UK)

 

Defining the role of the hematopoietic parasite reservoir in Plasmodium vivax infection and pathology

Plasmodium vivax is the most widely distributed malaria parasite and a major public health burden. Recent studies suggest that the majority of parasites is present outside of circulation, making it difficult to track and target them. We have demonstrated that bone marrow in particular represents an underappreciated reservoir which supports P. vivax growth and differentiation to transmission stages. Parallel studies have also reported major parasite accumulation in the spleen. Based on these findings we hypothesize that the haematopoietic niche of bone marrow and spleen represents the main parasite reservoir during infection and drives disease severity. In this ambitious research program, we will analyze infected bone marrow and spleen tissue from a series of cohorts of naturally exposed patients in endemic areas in Brazil. We will perform histological, molecular and phenotypic characterization of sequestered and circulating parasite and host cell populations to systematically investigate and quantify the role of bone marrow and spleen for parasite infection, transmission, diagnosis and pathology. This work will thus contribute much needed insights and critical tools for the ongoing global malaria elimination campaign.

  • Funding: Medical Research Council (UK) and FAPESP (Sao Paulo, Brazil)
  • Collaborators: Fabio Costa (University of Campinas, Campinas, Brazil), Marcus Lacerda (Tropical Medicine Foundation, Manaus, Brazil), Thomas Otto (University of Glasgow, Glasgow, UK), Kevin Couper (University of Manchester, Manchester, UK)

 

Utilizing gametocyte immunity to reduce malaria transmission

The continuing success of the current malaria elimination campaign requires novel tools to efficiently block human infection and subsequent transmission of the parasite to mosquitoes. Current transmission blocking strategies target the development of the parasite in the mosquito stage, requiring complicated mosquito feeding readouts to measure efficacy. We recently identified the bone marrow as the major site of transmission stage development during infection. Based on this finding we hypothesized that the underlying host parasite interactions could be exploited to block parasite transmission. Indeed, our preliminary studies demonstrates natural immune responses against parasite surface antigens and their functionality in terms of immune clearance. Here we utilize this new understanding to systematically define the immunity targeting malaria transmission with the ultimate goal of prioritizing a set of novel transmission blocking vaccine candidates.

  • Funding: Medical Research Council (UK)
  • Collaborators: Teun Bousema and Mathijs Jore (Radboud University, Nijmegen, the Netherlands), Chris Drakeley (LSHTM, London, UK), Josh Tan (NIH, Bethesda, USA), Lauren Cohee (University of Maryland, College Park, USA, Blantyre Malaria Project, College of Medicine, Blantyre, Malawi)

 

Avian Malaria

Avian malaria is a mosquito-transmitted disease caused by haemosporidian protozoa of the genus Plasmodium. This globally distributed disease affects various bird species with variable pathogenicity. In the bird host, infection causes blood and tissue pathology. Blood pathology is the result of erythrocyte destruction and anemia due to high parasitemia. A unique feature of haemosporidian parasites in birds is that exoerythrocytic meronts can also markedly damage organs before they acquire the ability to infect erythrocytes. As a result, significant tissue pathology and mortality can occur while there is limited peripheral parasitaemia, complicating avian malaria diagnosis through microscopic observation of blood smears or other molecular methods such as PCR. These unique features, coupled with the scarcity of wild bird avian malaria case specimens have most likely resulted in an underestimation of the role of exoerythrocytic meronts during infection. Interestingly, the infection outcomes appear to be varied across parasite and host species and influenced by the level of pathogen- host adaptation. The least adapted hosts are those that are naturally not infected, such as penguins and puffins. My aim is to systematically investigate the biology and pathology of different Plasmodium parasites infecting zoo-kept penguins and wild birds in Switzerland.

  • Collaborators:
    • Zoos: zoo Zürich, Tierpark Bern, Tonis Zoo, Basel Zoo, Knies Kinder Zoo
    • Vetsuisse Faculty: Prof. JM Hatt- Clinic für Zoo Animals, Exotic Pets and Wildlife, Dr. U.Hetzel and Prof. A. Kipar- Institute of Veterinary Pathology, Dr. med. vet. S. Albini- Department of Veterinary Bacteriology and Poultry and Rabbit Diseases-Institute for Food Safety and Hygiene.
    • External: Dr. W. Basso- Institute of Parasitology- University of Bern, Prof. P. Christe and Dr. O. Glaizot- Department of Ecology and Evolution- UNIL, Prof. G. Valkiunas -Institute of Ecology, Nature Research Centre, Lithuania, Prof. B. Russell- Department of Microbiology and Immunology, New Zealand, Prof. T. Otto - University of Glasgow and Prof. Z. Bozdech -Nanyang Technological University, Singapore.

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2000
Number of items: 92.

2024

Nyirenda, J. et al. (2024) Spatially resolved single-cell atlas unveils a distinct cellular signature of fatal lung COVID-19 in a Malawian population. Nature Medicine, (doi: 10.1038/s41591-024-03354-3) (Early Online Publication)

Da Silva Filho, J. et al. (2024) A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories. Science Translational Medicine, 16(764), eadk9149. (doi: 10.1126/scitranslmed.adk9149) (PMID:39259811)

Sollelis, L., Howick, V. M. and Marti, M. (2024) Revisiting the determinants of malaria transmission. Trends in Parasitology, 40(4), pp. 302-312. (doi: 10.1016/j.pt.2024.02.001) (PMID:38443304)

Obaldia III, N. et al. (2024) Sterile protection against vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Science Alliance, 7(3), e202302524. (doi: 10.26508/lsa.202302524) (PMID:38158220) (PMCID:PMC10756917)

2023

Nyirenda, J. et al. (2023) Spatially resolved single-cell atlas of the lung in fatal Covid19 in an African population reveals a distinct cellular signature and an interferon gamma dominated response. bioRxiv, (doi: 10.1101/2023.11.16.566964)

Ruiz, J. L., Reimering, S., Escobar-Prieto, J. D., Brancucci, N. N.M. , Echeverry, D. F., Abdi, A. I., Marti, M. , Gómez-Díaz, E. and Otto, T. D. (2023) From contigs towards chromosomes: automatic improvement of long read assemblies (ILRA). Briefings in Bioinformatics, 24(4), bbad248. (doi: 10.1093/bib/bbad248) (PMID:37406192) (PMCID:PMC10359078)

Chawla, J. et al. (2023) Phenotypic screens identify genetic factors associated with gametocyte development in the human malaria parasite Plasmodium falciparum. Microbiology Spectrum, 11(3), e0416422. (doi: 10.1128/spectrum.04164-22) (PMID:37154686) (PMCID:PMC10269797)

Abdi, A. I. et al. (2023) Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife, 12, e85140. (doi: 10.7554/eLife.85140) (PMID:36916164) (PMCID:PMC10059685)

2022

de Jong, R. M. et al. (2022) The acquisition of humoral immune responses targeting Plasmodium falciparum sexual stages in controlled human malaria infections. Frontiers in Immunology, 13, 930956. (doi: 10.3389/fimmu.2022.930956) (PMID:35924245) (PMCID:PMC9339717)

Hentzschel, F., Gibbins, M. P. , Attipa, C., Beraldi, D., Moxon, C. A. , Otto, T. D. and Marti, M. (2022) Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. Science Advances, 8(17), eabm7348. (doi: 10.1126/sciadv.abm7348) (PMID:35476438) (PMCID:PMC9045723)

Obaldía, N., Barahona, I., Lasso, J., Avila, M., Quijada, M., Nuñez, M. and Marti, M. (2022) Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Neglected Tropical Diseases, 16(4), e0010327. (doi: 10.1371/journal.pntd.0010327) (PMID:35394999) (PMCID:PMC9020738)

2021

Girard, A. et al. (2021) Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathogens, 17(11), e1010060. (doi: 10.1371/journal.ppat.1010060) (PMID:34780575) (PMCID:PMC8629383)

Wickenhagen, A. et al. (2021) A prenylated dsRNA sensor protects against severe COVID-19. Science, 374(6567), eabj3624. (doi: 10.1126/science.abj3624) (PMID:34581622) (PMCID:PMC7612834)

Silva-Filho, J. L. et al. (2021) Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients. eLife, 10, e71351. (doi: 10.7554/eLife.71351) (PMID:34585667) (PMCID:PMC8536259)

Meibalan, E. et al. (2021) Plasmodium falciparum gametocyte density and infectivity in peripheral blood and skin tissue of naturally infected parasite carriers in Burkina Faso. Journal of Infectious Diseases, 223(10), pp. 1822-1830. (doi: 10.1093/infdis/jiz680) (PMID:31875909) (PMCID:PMC8161640)

Kho, S. et al. (2021) Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. PLoS Medicine, 18(5), e1003632. (doi: 10.1371/journal.pmed.1003632) (PMID:34038413) (PMCID:PMC8154101)

Barry, A. et al. (2021) Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nature Communications, 12, 2443. (doi: 10.1038/s41467-021-22573-7) (PMID:33903595) (PMCID:PMC8076179)

Mejia, P. et al. (2021) Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria. Science Advances, 7(13), eabe2484. (doi: 10.1126/sciadv.abe2484) (PMID:33762334) (PMCID:PMC7990332)

2020

Buyon, L. E. et al. (2020) Population genomics of Plasmodium vivax in Panama to assess the risk of case importation on malaria elimination. PLoS Neglected Tropical Diseases, 14(12), e0008962. (doi: 10.1371/journal.pntd.0008962) (PMID:33315861) (PMCID:PMC7769613)

Hentzschel, F., Obrova, K. and Marti, M. (2020) No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Research, 5, 92. (doi: 10.12688/wellcomeopenres.15852.2) (PMID:33501380) (PMCID:PMC7808052)

Hung, J. et al. (2020) Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 21, 300. (doi: 10.1186/s12859-020-03635-x) (PMID:32652926) (PMCID:PMC7353739)

Silva-Filho, J. L. , Lacerda, M. V.G., Recker, M., Wassmer, S. C., Marti, M. and Costa, F. T.M. (2020) Plasmodium vivax in hematopoietic niches: hidden and dangerous. Trends in Parasitology, 36(5), pp. 447-458. (doi: 10.1016/j.pt.2020.03.002) (PMID:32298632)

Venugopal, K. , Hentzschel, F., Valkiūnas, G. and Marti, M. (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology, 18(3), pp. 177-189. (doi: 10.1038/s41579-019-0306-2) (PMID:31919479)

Meehan, G. R. , Scales, H. E. , Osii, R., De Niz, M., Lawton, J. C., Marti, M. , Garside, P. , Craig, A. and Brewer, J. M. (2020) Developing a xenograft model of human vasculature in the mouse ear pinna. Scientific Reports, 10, 2058. (doi: 10.1038/s41598-020-58650-y) (PMID:32029768) (PMCID:PMC7004987)

Moxon, C. A. , Gibbins, M. P. , McGuinness, D., Milner, D. A. and Marti, M. (2020) New insights into malaria pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 15(1), pp. 315-343. (doi: 10.1146/annurev-pathmechdis-012419-032640) (PMID:31648610)

2019

Alam, M. M. et al. (2019) Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science, 365(6456), eaau1682. (doi: 10.1126/science.aau1682) (PMID:31467193)

Ngotho, P., Blancke Soares, A., Hentzschel, F., Achcar, F. , Bertuccini, L. and Marti, M. (2019) Revisiting gametocyte biology in malaria parasites. FEMS Microbiology Reviews, 43(4), pp. 401-414. (doi: 10.1093/femsre/fuz010) (PMID:31220244) (PMCID:PMC6606849)

Dantzler, K. W. et al. (2019) Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Science Translational Medicine, 11(495), eaav3963. (doi: 10.1126/scitranslmed.aav3963) (PMID:31167926) (PMCID:PMC6653583)

De Niz, M., Meehan, G. R. , Brancucci, N. M.B. , Marti, M. , Rotureau, B., Figueiredo, L. M. and Frischknecht, F. (2019) Intravital imaging of host-parasite interactions in skin and adipose tissues. Cellular Microbiology, 21(5), e13023. (doi: 10.1111/cmi.13023) (PMID:30825872)

De Niz, M., Spadin, F., Marti, M. , Stein, J. V., Frenz, M. and Frischknecht, F. (2019) Toolbox for in vivo imaging of host-parasite interactions at multiple scales. Trends in Parasitology, 35(3), pp. 193-212. (doi: 10.1016/j.pt.2019.01.002) (PMID:30745251)

2018

Sollelis, L. and Marti, M. (2018) A major step towards defining the elusive stumpy inducing factor in Trypanosoma brucei. Trends in Parasitology, 35(1), pp. 6-8. (doi: 10.1016/j.pt.2018.11.009) (PMID:30554967)

Brancucci, N. M.B. , De Niz, M., Straub, T. J., Ravel, D., Sollelis, L., Birren, B. W., Voss, T. S., Neafsey, D. E. and Marti, M. (2018) Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 3, 70. (doi: 10.12688/wellcomeopenres.14645.4) (PMID:30320226) (PMCID:PMC6143928)

De Niz, M. et al. (2018) Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 4(5), eaat3775. (doi: 10.1126/sciadv.aat3775) (PMID:29806032) (PMCID:PMC5966192)

Obaldia III, N. et al. (2018) Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio, 9(3), e00625-18. (doi: 10.1128/mBio.00625-18) (PMID:29739900)

Fraschka, S. A. et al. (2018) Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host and Microbe, 23(3), 407-420.e8. (doi: 10.1016/j.chom.2018.01.008) (PMID:29503181)

Stone, W. J.R. et al. (2018) Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 9, 558. (doi: 10.1038/s41467-017-02646-2) (PMID:29422648) (PMCID:PMC5805765)

Meerstein-Kessel, L. et al. (2018) Probabilistic data integration identifies reliable gametocyte-specific proteins and transcripts in malaria parasites. Scientific Reports, 8, 410. (doi: 10.1038/s41598-017-18840-7) (PMID:29323249) (PMCID:PMC5765010)

Nilsson Bark, S. K. et al. (2018) Quantitative proteomic profiling reveals novel Plasmodium falciparum surface antigens and possible vaccine candidates. Molecular and Cellular Proteomics, 17(1), pp. 43-60. (doi: 10.1074/mcp.RA117.000076) (PMID:29162636)

Kato, N., March, S., Bhatia, S. N. and Marti, M. (2018) Phenotypic screening of small molecules with antimalarial activity for three different parasitic life stages. In: Wagner, B. (ed.) Phenotypic Screening: Methods and Protocols. Series: Methods in molecular biology (1787). Humana Press: New York, NY, pp. 41-52. ISBN 9781493978465 (doi: 10.1007/978-1-4939-7847-2_3)

2017

Brancucci, N. M.B. et al. (2017) Lysophosphatidylcholine regulates sexual Stage differentiation in the human malaria parasite Plasmodium falciparum. Cell, 171(7), 1532-1544.e15. (doi: 10.1016/j.cell.2017.10.020) (PMID:29129376) (PMCID:PMC5733390)

Mejia, P., Treviño-Villarreal, J. H., Reynolds, J. S., De Niz, M., Thompson, A., Marti, M. and Mitchell, J. R. (2017) A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malaria Journal, 16, 455. (doi: 10.1186/s12936-017-2092-5) (PMID:29121917) (PMCID:PMC5679345)

Meibalan, E. and Marti, M. (2017) Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine, 7(3), a025452. (doi: 10.1101/cshperspect.a025452) (PMID:27836912)

2016

Coalson, J. E. et al. (2016) High prevalence of Plasmodium falciparum gametocyte infections in school-age children using molecular detection: patterns and predictors of risk from a cross-sectional study in southern Malawi. Malaria Journal, 15(1), 527. (doi: 10.1186/s12936-016-1587-9) (PMID:27809907) (PMCID:PMC5096312)

Kato, N. et al. (2016) Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), pp. 344-349. (doi: 10.1038/nature19804) (PMID:27602946) (PMCID:PMC5515376)

Mantel, P.-Y. et al. (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nature Communications, 7, 12727. (doi: 10.1038/ncomms12727) (PMID:27721445) (PMCID:PMC5062468)

Marti, M. and Johnson, P. J. (2016) Emerging roles for extracellular vesicles in parasitic infections. Current Opinion in Microbiology, 32, pp. 66-70. (doi: 10.1016/j.mib.2016.04.008) (PMID:27208506)

Marti, M. and Hill, K. L. (2016) Sensing and signaling in parasitism. Molecular and Biochemical Parasitology, 208(1), p. 1. (doi: 10.1016/j.molbiopara.2016.07.010) (PMID:27546054) (PMCID:PMC5208041)

Chang, H.-H. et al. (2016) Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Scientific Reports, 6, p. 26330. (doi: 10.1038/srep26330) (PMID:27197604) (PMCID:PMC4873826)

Joice, R. et al. (2016) Evidence for spleen dysfunction in malaria-HIV co-infection in a subset of pediatric patients. Modern Pathology, 29(4), pp. 381-390. (doi: 10.1038/modpathol.2016.27) (PMID:26916076) (PMCID:PMC4811692)

Obaldía III, N. et al. (2016) Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Scientific Reports, 6, 21216. (doi: 10.1038/srep21216) (PMID:26880111) (PMCID:PMC4754742)

STONE, W. J. R., DANTZLER, K. W., NILSSON, S. K., DRAKELEY, C. J., MARTI, M. , BOUSEMA, T. and RIJPMA, S. R. (2016) Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology, 143(02), pp. 187-198. (doi: 10.1017/S0031182015001341) (PMID:26743529)

2015

Pellé, K. G., Jiang, R. H. Y., Mantel, P.-Y., Xiao, Y.-P., Hjelmqvist, D., Gallego-Lopez, G. M., O.T. Lau, A., Kang, B.-H., Allred, D. R. and Marti, M. (2015) Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cellular Microbiology, 17(11), pp. 1618-1639. (doi: 10.1111/cmi.12460) (PMID:25996544)

Gulati, S. et al. (2015) Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host and Microbe, 18(3), pp. 371-381. (doi: 10.1016/j.chom.2015.08.003) (PMID:26355219) (PMCID:PMC4567697)

Brancucci, N. M. B., Goldowitz, I., Buchholz, K., Werling, K. and Marti, M. (2015) An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nature Protocols, 10(8), pp. 1131-1142. (doi: 10.1038/nprot.2015.072) (PMID:26134953) (PMCID:PMC4581880)

Dantzler, K. W., Ravel, D. B., Brancucci, N. M. and Marti, M. (2015) Ensuring transmission through dynamic host environments: host–pathogen interactions in Plasmodium sexual development. Current Opinion in Microbiology, 26, pp. 17-23. (doi: 10.1016/j.mib.2015.03.005) (PMID:25867628) (PMCID:PMC4577303)

Nilsson, S. K., Childs, L. M., Buckee, C. and Marti, M. (2015) Targeting human transmission biology for malaria elimination. PLoS Pathogens, 11(6), e1004871. (doi: 10.1371/journal.ppat.1004871) (PMID:26086192) (PMCID:PMC4472755)

Choi, J.-Y., Duraisingh, M. T., Marti, M. , Ben Mamoun, C. and Voelker, D. R. (2015) From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. Journal of Biological Chemistry, 290(17), pp. 10972-10980. (doi: 10.1074/jbc.M115.642413) (PMID:25724650) (PMCID:PMC4409258)

Obaldia, N. et al. (2015) Clonal outbreak of Plasmodium falciparum infection in Eastern Panama. Journal of Infectious Diseases, 211(7), pp. 1087-1096. (doi: 10.1093/infdis/jiu575) (PMID:25336725) (PMCID:PMC4366603)

Pelle, K. G. et al. (2015) Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Medicine, 7(1), 19. (doi: 10.1186/s13073-015-0133-7) (PMID:25722744) (PMCID:PMC4342211)

2014

Tao, D. et al. (2014) Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular and Cellular Proteomics, 13(10), pp. 2705-2724. (doi: 10.1074/mcp.M114.040956) (PMID:25056935) (PMCID:PMC4188997)

Coleman, B. I. et al. (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host and Microbe, 16(2), pp. 177-186. (doi: 10.1016/j.chom.2014.06.014) (PMID:25121747) (PMCID:PMC4188636)

Joice, R. et al. (2014) Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine, 6(244), 244re5. (doi: 10.1126/scitranslmed.3008882) (PMID:25009232) (PMCID:PMC4175394)

Spielmann, T., Marti, M. and Gilberger, T. W. (2014) Protein export. In: Kremsner, P. G. and Krishna, S. (eds.) Encyclopedia of Malaria. Springer: New York. ISBN 9781461487579 (doi: 10.1007/978-1-4614-8757-9_35-1)

Ankarklev, J., Brancucci, N. M.B., Goldowitz, I., Mantel, P.-Y. and Marti, M. (2014) Sex: how malaria parasites get turned on. Current Biology, 24(9), R368-R370. (doi: 10.1016/j.cub.2014.03.046) (PMID:24801188)

Mantel, P.-Y. and Marti, M. (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cellular Microbiology, 16(3), pp. 344-354. (doi: 10.1111/cmi.12259) (PMID:24406102) (PMCID:PMC3965572)

Aguilar, R. et al. (2014) Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood, 123(7), pp. 959-966. (doi: 10.1182/blood-2013-08-520767) (PMID:24335496) (PMCID:PMC4067503)

2013

Przytycka, T. M. et al. (2013) Inferring developmental stage composition from gene expression in human malaria. PLoS Computational Biology, 9(12), e1003392. (doi: 10.1371/journal.pcbi.1003392) (PMID:24348235) (PMCID:PMC3861035)

Mantel, P.-Y. et al. (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host and Microbe, 13(5), pp. 521-534. (doi: 10.1016/j.chom.2013.04.009) (PMID:23684304) (PMCID:PMC3687518)

Hanson, K.K. et al. (2013) Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(30), E2838-E2847. (doi: 10.1073/pnas.1306097110) (PMID:23836641) (PMCID:PMC3725106)

Marti, M. and Spielmann, T. (2013) Protein export in malaria parasites: many membranes to cross. Current Opinion in Microbiology, 16(4), pp. 445-451. (doi: 10.1016/j.mib.2013.04.010) (PMID:23725671) (PMCID:PMC3755040)

2012

Vorobjev, I. A., Buchholz, K., Prabhat, P., Ketman, K., Egan, E. S., Marti, M. , Duraisingh, M. T. and Barteneva, N. S. (2012) Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters. Malaria Journal, 11(1), p. 312. (doi: 10.1186/1475-2875-11-312) (PMID:22950515) (PMCID:PMC3544587)

Aingaran, M. et al. (2012) Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cellular Microbiology, 14(7), pp. 983-993. (doi: 10.1111/j.1462-5822.2012.01786.x) (PMID:22417683) (PMCID:PMC3376226)

da Cruz, F. P. et al. (2012) Drug screen targeted at plasmodium liver stages identifies a potent multistage antimalarial drug. Journal of Infectious Diseases, 205(8), pp. 1278-1286. (doi: 10.1093/infdis/jis184) (PMID:22396598) (PMCID:PMC3308910)

Jiang, R. H.Y. and Marti, M. (2012) A PIP gets the Plasmodium protein export pathway going. Cell Host and Microbe, 11(2), pp. 99-100. (doi: 10.1016/j.chom.2012.01.011) (PMID:22341457)

2011

Morahan, B. J., Strobel, C., Hasan, U., Czesny, B., Mantel, P.-Y., Marti, M. , Eksi, S. and Williamson, K. C. (2011) Functional analysis of the exported type IV HSP40 Protein PfGECO in Plasmodium falciparum gametocytes. Eukaryotic Cell, 10(11), pp. 1492-1503. (doi: 10.1128/EC.05155-11) (PMID:21965515) (PMCID:PMC3209067)

Buchholz, K., Burke, T. A., Williamson, K. C., Wiegand, R. C., Wirth, D. F. and Marti, M. (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. Journal of Infectious Diseases, 203(10), pp. 1445-1453. (doi: 10.1093/infdis/jir037) (PMID:21502082) (PMCID:PMC3080890)

2008

Struck, N. S. et al. (2008) Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Molecular Microbiology, 67(6), pp. 1320-1330. (doi: 10.1111/j.1365-2958.2008.06125.x) (PMID:18284574)

Struck, N. S. et al. (2008) Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. Journal of Cell Science, 121(13), pp. 2123-2129. (doi: 10.1242/jcs.021154) (PMID:18522993)

2007

Maier, A. G., Rug, M., O'Neill, M. T., Beeson, J. G., Marti, M. , Reeder, J. and Cowman, A. F. (2007) Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood, 109(3), pp. 1289-1297. (doi: 10.1182/blood-2006-08-043364) (PMID:17023587) (PMCID:PMC1785152)

2006

Cooke, B. M., Buckingham, D. W., Glenister, F. K., Fernandez, K. M., Bannister, L. H., Marti, M. , Mohandas, N. and Coppel, R. L. (2006) A Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Journal of Cell Biology, 172(6), pp. 899-908. (doi: 10.1083/jcb.200509122) (PMID:16520384) (PMCID:PMC2063733)

Sargeant, T. J., Marti, M. , Caler, E., Carlton, J. M., Simpson, K., Speed, T. P. and Cowman, A. F. (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 7(2), R12. (doi: 10.1186/gb-2006-7-2-r12) (PMID:16507167) (PMCID:PMC1431722)

2005

Struck, N. S., de Souza Dias, S., Langer, C., Marti, M. , Pearce, J. A., Cowman, A. F. and Gilberger, T. W. (2005) Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 118(23), pp. 5603-5613. (doi: 10.1242/jcs.02673) (PMCID:16306223)

Marti, M. , Baum, J., Rug, M., Tilley, L. and Cowman, A. F. (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 171(4), pp. 587-592. (doi: 10.1083/jcb.200508051) (PMID:16301328) (PMCID:PMC2171567)

van Dooren, G. G., Marti, M. , Tonkin, C. J., Stimmler, L. M., Cowman, A. F. and McFadden, G. I. (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Molecular Microbiology, 57(2), pp. 405-419. (doi: 10.1111/j.1365-2958.2005.04699.x) (PMID:15978074)

2004

Marti, M. , Good, R. T., Rug, M., Knueppfer, E. and Cowman, A. F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306(5703), pp. 1930-1933. (doi: 10.1126/science.1102452) (PMID:15591202)

Hehl, A. B. and Marti, M. (2004) Secretory protein trafficking in Giardia intestinalis. Molecular Microbiology, 53(1), pp. 19-28. (doi: 10.1111/j.1365-2958.2004.04115.x) (PMID:15225300)

2003

Marti, M. and Hehl, A. B. (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends in Parasitology, 19(10), pp. 440-446. (doi: 10.1016/S1471-4922(03)00201-0) (PMID:14519581)

Marti, M. , Regös, A., Li, Y., Schraner, E. M., Wild, P., Müller, N., Knopf, L. G. and Hehl, A. B. (2003) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. Journal of Biological Chemistry, 278(27), pp. 24837-24848. (doi: 10.1074/jbc.M302082200) (PMID:12711599)

Marti, M. , Li, Y., Schraner, E. M., Wild, P., Köhler, P. and Hehl, A. B. (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Molecular Biology of the Cell, 14(4), pp. 1433-1447. (doi: 10.1091/mbc.E02-08-0467) (PMID:12686599) (PMCID:PMC153112)

2002

Marti, M. , Li, Y., Köhler, P. and Hehl, A. B. (2002) Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infection and Immunity, 70(2), pp. 1014-1016. (doi: 10.1128/IAI.70.2.1014-1016.2002) (PMID:11796643) (PMCID:PMC127713)

2000

Hehl, A. B., Marti, M. and Köhler, P. (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Molecular Biology of the Cell, 11(5), pp. 1789-1800. (doi: 10.1091/mbc.11.5.1789) (PMID:10793152) (PMCID:PMC14884)

Subramanian, A. B., Navarro, S., Carrasco, R. A., Marti, M. and Das, S. (2000) Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 1483(1), pp. 69-80. (doi: 10.1016/S1388-1981(99)00171-7) (PMID:10601696)

This list was generated on Sat Jan 18 12:27:30 2025 GMT.
Number of items: 92.

Articles

Nyirenda, J. et al. (2024) Spatially resolved single-cell atlas unveils a distinct cellular signature of fatal lung COVID-19 in a Malawian population. Nature Medicine, (doi: 10.1038/s41591-024-03354-3) (Early Online Publication)

Da Silva Filho, J. et al. (2024) A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories. Science Translational Medicine, 16(764), eadk9149. (doi: 10.1126/scitranslmed.adk9149) (PMID:39259811)

Sollelis, L., Howick, V. M. and Marti, M. (2024) Revisiting the determinants of malaria transmission. Trends in Parasitology, 40(4), pp. 302-312. (doi: 10.1016/j.pt.2024.02.001) (PMID:38443304)

Obaldia III, N. et al. (2024) Sterile protection against vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Science Alliance, 7(3), e202302524. (doi: 10.26508/lsa.202302524) (PMID:38158220) (PMCID:PMC10756917)

Nyirenda, J. et al. (2023) Spatially resolved single-cell atlas of the lung in fatal Covid19 in an African population reveals a distinct cellular signature and an interferon gamma dominated response. bioRxiv, (doi: 10.1101/2023.11.16.566964)

Ruiz, J. L., Reimering, S., Escobar-Prieto, J. D., Brancucci, N. N.M. , Echeverry, D. F., Abdi, A. I., Marti, M. , Gómez-Díaz, E. and Otto, T. D. (2023) From contigs towards chromosomes: automatic improvement of long read assemblies (ILRA). Briefings in Bioinformatics, 24(4), bbad248. (doi: 10.1093/bib/bbad248) (PMID:37406192) (PMCID:PMC10359078)

Chawla, J. et al. (2023) Phenotypic screens identify genetic factors associated with gametocyte development in the human malaria parasite Plasmodium falciparum. Microbiology Spectrum, 11(3), e0416422. (doi: 10.1128/spectrum.04164-22) (PMID:37154686) (PMCID:PMC10269797)

Abdi, A. I. et al. (2023) Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife, 12, e85140. (doi: 10.7554/eLife.85140) (PMID:36916164) (PMCID:PMC10059685)

de Jong, R. M. et al. (2022) The acquisition of humoral immune responses targeting Plasmodium falciparum sexual stages in controlled human malaria infections. Frontiers in Immunology, 13, 930956. (doi: 10.3389/fimmu.2022.930956) (PMID:35924245) (PMCID:PMC9339717)

Hentzschel, F., Gibbins, M. P. , Attipa, C., Beraldi, D., Moxon, C. A. , Otto, T. D. and Marti, M. (2022) Host cell maturation modulates parasite invasion and sexual differentiation in Plasmodium berghei. Science Advances, 8(17), eabm7348. (doi: 10.1126/sciadv.abm7348) (PMID:35476438) (PMCID:PMC9045723)

Obaldía, N., Barahona, I., Lasso, J., Avila, M., Quijada, M., Nuñez, M. and Marti, M. (2022) Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Neglected Tropical Diseases, 16(4), e0010327. (doi: 10.1371/journal.pntd.0010327) (PMID:35394999) (PMCID:PMC9020738)

Girard, A. et al. (2021) Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathogens, 17(11), e1010060. (doi: 10.1371/journal.ppat.1010060) (PMID:34780575) (PMCID:PMC8629383)

Wickenhagen, A. et al. (2021) A prenylated dsRNA sensor protects against severe COVID-19. Science, 374(6567), eabj3624. (doi: 10.1126/science.abj3624) (PMID:34581622) (PMCID:PMC7612834)

Silva-Filho, J. L. et al. (2021) Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients. eLife, 10, e71351. (doi: 10.7554/eLife.71351) (PMID:34585667) (PMCID:PMC8536259)

Meibalan, E. et al. (2021) Plasmodium falciparum gametocyte density and infectivity in peripheral blood and skin tissue of naturally infected parasite carriers in Burkina Faso. Journal of Infectious Diseases, 223(10), pp. 1822-1830. (doi: 10.1093/infdis/jiz680) (PMID:31875909) (PMCID:PMC8161640)

Kho, S. et al. (2021) Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study. PLoS Medicine, 18(5), e1003632. (doi: 10.1371/journal.pmed.1003632) (PMID:34038413) (PMCID:PMC8154101)

Barry, A. et al. (2021) Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nature Communications, 12, 2443. (doi: 10.1038/s41467-021-22573-7) (PMID:33903595) (PMCID:PMC8076179)

Mejia, P. et al. (2021) Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria. Science Advances, 7(13), eabe2484. (doi: 10.1126/sciadv.abe2484) (PMID:33762334) (PMCID:PMC7990332)

Buyon, L. E. et al. (2020) Population genomics of Plasmodium vivax in Panama to assess the risk of case importation on malaria elimination. PLoS Neglected Tropical Diseases, 14(12), e0008962. (doi: 10.1371/journal.pntd.0008962) (PMID:33315861) (PMCID:PMC7769613)

Hentzschel, F., Obrova, K. and Marti, M. (2020) No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Research, 5, 92. (doi: 10.12688/wellcomeopenres.15852.2) (PMID:33501380) (PMCID:PMC7808052)

Hung, J. et al. (2020) Keras R-CNN: library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 21, 300. (doi: 10.1186/s12859-020-03635-x) (PMID:32652926) (PMCID:PMC7353739)

Silva-Filho, J. L. , Lacerda, M. V.G., Recker, M., Wassmer, S. C., Marti, M. and Costa, F. T.M. (2020) Plasmodium vivax in hematopoietic niches: hidden and dangerous. Trends in Parasitology, 36(5), pp. 447-458. (doi: 10.1016/j.pt.2020.03.002) (PMID:32298632)

Venugopal, K. , Hentzschel, F., Valkiūnas, G. and Marti, M. (2020) Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews Microbiology, 18(3), pp. 177-189. (doi: 10.1038/s41579-019-0306-2) (PMID:31919479)

Meehan, G. R. , Scales, H. E. , Osii, R., De Niz, M., Lawton, J. C., Marti, M. , Garside, P. , Craig, A. and Brewer, J. M. (2020) Developing a xenograft model of human vasculature in the mouse ear pinna. Scientific Reports, 10, 2058. (doi: 10.1038/s41598-020-58650-y) (PMID:32029768) (PMCID:PMC7004987)

Moxon, C. A. , Gibbins, M. P. , McGuinness, D., Milner, D. A. and Marti, M. (2020) New insights into malaria pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 15(1), pp. 315-343. (doi: 10.1146/annurev-pathmechdis-012419-032640) (PMID:31648610)

Alam, M. M. et al. (2019) Validation of the protein kinase PfCLK3 as a multistage cross-species malarial drug target. Science, 365(6456), eaau1682. (doi: 10.1126/science.aau1682) (PMID:31467193)

Ngotho, P., Blancke Soares, A., Hentzschel, F., Achcar, F. , Bertuccini, L. and Marti, M. (2019) Revisiting gametocyte biology in malaria parasites. FEMS Microbiology Reviews, 43(4), pp. 401-414. (doi: 10.1093/femsre/fuz010) (PMID:31220244) (PMCID:PMC6606849)

Dantzler, K. W. et al. (2019) Naturally acquired immunity against immature Plasmodium falciparum gametocytes. Science Translational Medicine, 11(495), eaav3963. (doi: 10.1126/scitranslmed.aav3963) (PMID:31167926) (PMCID:PMC6653583)

De Niz, M., Meehan, G. R. , Brancucci, N. M.B. , Marti, M. , Rotureau, B., Figueiredo, L. M. and Frischknecht, F. (2019) Intravital imaging of host-parasite interactions in skin and adipose tissues. Cellular Microbiology, 21(5), e13023. (doi: 10.1111/cmi.13023) (PMID:30825872)

De Niz, M., Spadin, F., Marti, M. , Stein, J. V., Frenz, M. and Frischknecht, F. (2019) Toolbox for in vivo imaging of host-parasite interactions at multiple scales. Trends in Parasitology, 35(3), pp. 193-212. (doi: 10.1016/j.pt.2019.01.002) (PMID:30745251)

Sollelis, L. and Marti, M. (2018) A major step towards defining the elusive stumpy inducing factor in Trypanosoma brucei. Trends in Parasitology, 35(1), pp. 6-8. (doi: 10.1016/j.pt.2018.11.009) (PMID:30554967)

Brancucci, N. M.B. , De Niz, M., Straub, T. J., Ravel, D., Sollelis, L., Birren, B. W., Voss, T. S., Neafsey, D. E. and Marti, M. (2018) Probing Plasmodium falciparum sexual commitment at the single-cell level. Wellcome Open Research, 3, 70. (doi: 10.12688/wellcomeopenres.14645.4) (PMID:30320226) (PMCID:PMC6143928)

De Niz, M. et al. (2018) Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow. Science Advances, 4(5), eaat3775. (doi: 10.1126/sciadv.aat3775) (PMID:29806032) (PMCID:PMC5966192)

Obaldia III, N. et al. (2018) Bone marrow is a major parasite reservoir in Plasmodium vivax infection. mBio, 9(3), e00625-18. (doi: 10.1128/mBio.00625-18) (PMID:29739900)

Fraschka, S. A. et al. (2018) Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host and Microbe, 23(3), 407-420.e8. (doi: 10.1016/j.chom.2018.01.008) (PMID:29503181)

Stone, W. J.R. et al. (2018) Unravelling the immune signature of Plasmodium falciparum transmission-reducing immunity. Nature Communications, 9, 558. (doi: 10.1038/s41467-017-02646-2) (PMID:29422648) (PMCID:PMC5805765)

Meerstein-Kessel, L. et al. (2018) Probabilistic data integration identifies reliable gametocyte-specific proteins and transcripts in malaria parasites. Scientific Reports, 8, 410. (doi: 10.1038/s41598-017-18840-7) (PMID:29323249) (PMCID:PMC5765010)

Nilsson Bark, S. K. et al. (2018) Quantitative proteomic profiling reveals novel Plasmodium falciparum surface antigens and possible vaccine candidates. Molecular and Cellular Proteomics, 17(1), pp. 43-60. (doi: 10.1074/mcp.RA117.000076) (PMID:29162636)

Brancucci, N. M.B. et al. (2017) Lysophosphatidylcholine regulates sexual Stage differentiation in the human malaria parasite Plasmodium falciparum. Cell, 171(7), 1532-1544.e15. (doi: 10.1016/j.cell.2017.10.020) (PMID:29129376) (PMCID:PMC5733390)

Mejia, P., Treviño-Villarreal, J. H., Reynolds, J. S., De Niz, M., Thompson, A., Marti, M. and Mitchell, J. R. (2017) A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malaria Journal, 16, 455. (doi: 10.1186/s12936-017-2092-5) (PMID:29121917) (PMCID:PMC5679345)

Meibalan, E. and Marti, M. (2017) Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine, 7(3), a025452. (doi: 10.1101/cshperspect.a025452) (PMID:27836912)

Coalson, J. E. et al. (2016) High prevalence of Plasmodium falciparum gametocyte infections in school-age children using molecular detection: patterns and predictors of risk from a cross-sectional study in southern Malawi. Malaria Journal, 15(1), 527. (doi: 10.1186/s12936-016-1587-9) (PMID:27809907) (PMCID:PMC5096312)

Kato, N. et al. (2016) Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7625), pp. 344-349. (doi: 10.1038/nature19804) (PMID:27602946) (PMCID:PMC5515376)

Mantel, P.-Y. et al. (2016) Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nature Communications, 7, 12727. (doi: 10.1038/ncomms12727) (PMID:27721445) (PMCID:PMC5062468)

Marti, M. and Johnson, P. J. (2016) Emerging roles for extracellular vesicles in parasitic infections. Current Opinion in Microbiology, 32, pp. 66-70. (doi: 10.1016/j.mib.2016.04.008) (PMID:27208506)

Marti, M. and Hill, K. L. (2016) Sensing and signaling in parasitism. Molecular and Biochemical Parasitology, 208(1), p. 1. (doi: 10.1016/j.molbiopara.2016.07.010) (PMID:27546054) (PMCID:PMC5208041)

Chang, H.-H. et al. (2016) Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Scientific Reports, 6, p. 26330. (doi: 10.1038/srep26330) (PMID:27197604) (PMCID:PMC4873826)

Joice, R. et al. (2016) Evidence for spleen dysfunction in malaria-HIV co-infection in a subset of pediatric patients. Modern Pathology, 29(4), pp. 381-390. (doi: 10.1038/modpathol.2016.27) (PMID:26916076) (PMCID:PMC4811692)

Obaldía III, N. et al. (2016) Altered drug susceptibility during host adaptation of a Plasmodium falciparum strain in a non-human primate model. Scientific Reports, 6, 21216. (doi: 10.1038/srep21216) (PMID:26880111) (PMCID:PMC4754742)

STONE, W. J. R., DANTZLER, K. W., NILSSON, S. K., DRAKELEY, C. J., MARTI, M. , BOUSEMA, T. and RIJPMA, S. R. (2016) Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology, 143(02), pp. 187-198. (doi: 10.1017/S0031182015001341) (PMID:26743529)

Pellé, K. G., Jiang, R. H. Y., Mantel, P.-Y., Xiao, Y.-P., Hjelmqvist, D., Gallego-Lopez, G. M., O.T. Lau, A., Kang, B.-H., Allred, D. R. and Marti, M. (2015) Shared elements of host-targeting pathways among apicomplexan parasites of differing lifestyles. Cellular Microbiology, 17(11), pp. 1618-1639. (doi: 10.1111/cmi.12460) (PMID:25996544)

Gulati, S. et al. (2015) Profiling the essential nature of lipid metabolism in asexual blood and gametocyte stages of Plasmodium falciparum. Cell Host and Microbe, 18(3), pp. 371-381. (doi: 10.1016/j.chom.2015.08.003) (PMID:26355219) (PMCID:PMC4567697)

Brancucci, N. M. B., Goldowitz, I., Buchholz, K., Werling, K. and Marti, M. (2015) An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nature Protocols, 10(8), pp. 1131-1142. (doi: 10.1038/nprot.2015.072) (PMID:26134953) (PMCID:PMC4581880)

Dantzler, K. W., Ravel, D. B., Brancucci, N. M. and Marti, M. (2015) Ensuring transmission through dynamic host environments: host–pathogen interactions in Plasmodium sexual development. Current Opinion in Microbiology, 26, pp. 17-23. (doi: 10.1016/j.mib.2015.03.005) (PMID:25867628) (PMCID:PMC4577303)

Nilsson, S. K., Childs, L. M., Buckee, C. and Marti, M. (2015) Targeting human transmission biology for malaria elimination. PLoS Pathogens, 11(6), e1004871. (doi: 10.1371/journal.ppat.1004871) (PMID:26086192) (PMCID:PMC4472755)

Choi, J.-Y., Duraisingh, M. T., Marti, M. , Ben Mamoun, C. and Voelker, D. R. (2015) From protease to decarboxylase: the molecular metamorphosis of phosphatidylserine decarboxylase. Journal of Biological Chemistry, 290(17), pp. 10972-10980. (doi: 10.1074/jbc.M115.642413) (PMID:25724650) (PMCID:PMC4409258)

Obaldia, N. et al. (2015) Clonal outbreak of Plasmodium falciparum infection in Eastern Panama. Journal of Infectious Diseases, 211(7), pp. 1087-1096. (doi: 10.1093/infdis/jiu575) (PMID:25336725) (PMCID:PMC4366603)

Pelle, K. G. et al. (2015) Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Medicine, 7(1), 19. (doi: 10.1186/s13073-015-0133-7) (PMID:25722744) (PMCID:PMC4342211)

Tao, D. et al. (2014) Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular and Cellular Proteomics, 13(10), pp. 2705-2724. (doi: 10.1074/mcp.M114.040956) (PMID:25056935) (PMCID:PMC4188997)

Coleman, B. I. et al. (2014) A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host and Microbe, 16(2), pp. 177-186. (doi: 10.1016/j.chom.2014.06.014) (PMID:25121747) (PMCID:PMC4188636)

Joice, R. et al. (2014) Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine, 6(244), 244re5. (doi: 10.1126/scitranslmed.3008882) (PMID:25009232) (PMCID:PMC4175394)

Ankarklev, J., Brancucci, N. M.B., Goldowitz, I., Mantel, P.-Y. and Marti, M. (2014) Sex: how malaria parasites get turned on. Current Biology, 24(9), R368-R370. (doi: 10.1016/j.cub.2014.03.046) (PMID:24801188)

Mantel, P.-Y. and Marti, M. (2014) The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cellular Microbiology, 16(3), pp. 344-354. (doi: 10.1111/cmi.12259) (PMID:24406102) (PMCID:PMC3965572)

Aguilar, R. et al. (2014) Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood, 123(7), pp. 959-966. (doi: 10.1182/blood-2013-08-520767) (PMID:24335496) (PMCID:PMC4067503)

Przytycka, T. M. et al. (2013) Inferring developmental stage composition from gene expression in human malaria. PLoS Computational Biology, 9(12), e1003392. (doi: 10.1371/journal.pcbi.1003392) (PMID:24348235) (PMCID:PMC3861035)

Mantel, P.-Y. et al. (2013) Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host and Microbe, 13(5), pp. 521-534. (doi: 10.1016/j.chom.2013.04.009) (PMID:23684304) (PMCID:PMC3687518)

Hanson, K.K. et al. (2013) Torins are potent antimalarials that block replenishment of Plasmodium liver stage parasitophorous vacuole membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 110(30), E2838-E2847. (doi: 10.1073/pnas.1306097110) (PMID:23836641) (PMCID:PMC3725106)

Marti, M. and Spielmann, T. (2013) Protein export in malaria parasites: many membranes to cross. Current Opinion in Microbiology, 16(4), pp. 445-451. (doi: 10.1016/j.mib.2013.04.010) (PMID:23725671) (PMCID:PMC3755040)

Vorobjev, I. A., Buchholz, K., Prabhat, P., Ketman, K., Egan, E. S., Marti, M. , Duraisingh, M. T. and Barteneva, N. S. (2012) Optimization of flow cytometric detection and cell sorting of transgenic Plasmodium parasites using interchangeable optical filters. Malaria Journal, 11(1), p. 312. (doi: 10.1186/1475-2875-11-312) (PMID:22950515) (PMCID:PMC3544587)

Aingaran, M. et al. (2012) Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cellular Microbiology, 14(7), pp. 983-993. (doi: 10.1111/j.1462-5822.2012.01786.x) (PMID:22417683) (PMCID:PMC3376226)

da Cruz, F. P. et al. (2012) Drug screen targeted at plasmodium liver stages identifies a potent multistage antimalarial drug. Journal of Infectious Diseases, 205(8), pp. 1278-1286. (doi: 10.1093/infdis/jis184) (PMID:22396598) (PMCID:PMC3308910)

Jiang, R. H.Y. and Marti, M. (2012) A PIP gets the Plasmodium protein export pathway going. Cell Host and Microbe, 11(2), pp. 99-100. (doi: 10.1016/j.chom.2012.01.011) (PMID:22341457)

Morahan, B. J., Strobel, C., Hasan, U., Czesny, B., Mantel, P.-Y., Marti, M. , Eksi, S. and Williamson, K. C. (2011) Functional analysis of the exported type IV HSP40 Protein PfGECO in Plasmodium falciparum gametocytes. Eukaryotic Cell, 10(11), pp. 1492-1503. (doi: 10.1128/EC.05155-11) (PMID:21965515) (PMCID:PMC3209067)

Buchholz, K., Burke, T. A., Williamson, K. C., Wiegand, R. C., Wirth, D. F. and Marti, M. (2011) A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. Journal of Infectious Diseases, 203(10), pp. 1445-1453. (doi: 10.1093/infdis/jir037) (PMID:21502082) (PMCID:PMC3080890)

Struck, N. S. et al. (2008) Spatial dissection of the cis- and trans-Golgi compartments in the malaria parasite Plasmodium falciparum. Molecular Microbiology, 67(6), pp. 1320-1330. (doi: 10.1111/j.1365-2958.2008.06125.x) (PMID:18284574)

Struck, N. S. et al. (2008) Plasmodium falciparum possesses two GRASP proteins that are differentially targeted to the Golgi complex via a higher- and lower-eukaryote-like mechanism. Journal of Cell Science, 121(13), pp. 2123-2129. (doi: 10.1242/jcs.021154) (PMID:18522993)

Maier, A. G., Rug, M., O'Neill, M. T., Beeson, J. G., Marti, M. , Reeder, J. and Cowman, A. F. (2007) Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood, 109(3), pp. 1289-1297. (doi: 10.1182/blood-2006-08-043364) (PMID:17023587) (PMCID:PMC1785152)

Cooke, B. M., Buckingham, D. W., Glenister, F. K., Fernandez, K. M., Bannister, L. H., Marti, M. , Mohandas, N. and Coppel, R. L. (2006) A Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. Journal of Cell Biology, 172(6), pp. 899-908. (doi: 10.1083/jcb.200509122) (PMID:16520384) (PMCID:PMC2063733)

Sargeant, T. J., Marti, M. , Caler, E., Carlton, J. M., Simpson, K., Speed, T. P. and Cowman, A. F. (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biology, 7(2), R12. (doi: 10.1186/gb-2006-7-2-r12) (PMID:16507167) (PMCID:PMC1431722)

Struck, N. S., de Souza Dias, S., Langer, C., Marti, M. , Pearce, J. A., Cowman, A. F. and Gilberger, T. W. (2005) Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP. Journal of Cell Science, 118(23), pp. 5603-5613. (doi: 10.1242/jcs.02673) (PMCID:16306223)

Marti, M. , Baum, J., Rug, M., Tilley, L. and Cowman, A. F. (2005) Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. Journal of Cell Biology, 171(4), pp. 587-592. (doi: 10.1083/jcb.200508051) (PMID:16301328) (PMCID:PMC2171567)

van Dooren, G. G., Marti, M. , Tonkin, C. J., Stimmler, L. M., Cowman, A. F. and McFadden, G. I. (2005) Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Molecular Microbiology, 57(2), pp. 405-419. (doi: 10.1111/j.1365-2958.2005.04699.x) (PMID:15978074)

Marti, M. , Good, R. T., Rug, M., Knueppfer, E. and Cowman, A. F. (2004) Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 306(5703), pp. 1930-1933. (doi: 10.1126/science.1102452) (PMID:15591202)

Hehl, A. B. and Marti, M. (2004) Secretory protein trafficking in Giardia intestinalis. Molecular Microbiology, 53(1), pp. 19-28. (doi: 10.1111/j.1365-2958.2004.04115.x) (PMID:15225300)

Marti, M. and Hehl, A. B. (2003) Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends in Parasitology, 19(10), pp. 440-446. (doi: 10.1016/S1471-4922(03)00201-0) (PMID:14519581)

Marti, M. , Regös, A., Li, Y., Schraner, E. M., Wild, P., Müller, N., Knopf, L. G. and Hehl, A. B. (2003) An ancestral secretory apparatus in the protozoan parasite Giardia intestinalis. Journal of Biological Chemistry, 278(27), pp. 24837-24848. (doi: 10.1074/jbc.M302082200) (PMID:12711599)

Marti, M. , Li, Y., Schraner, E. M., Wild, P., Köhler, P. and Hehl, A. B. (2003) The secretory apparatus of an ancient eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like compartments. Molecular Biology of the Cell, 14(4), pp. 1433-1447. (doi: 10.1091/mbc.E02-08-0467) (PMID:12686599) (PMCID:PMC153112)

Marti, M. , Li, Y., Köhler, P. and Hehl, A. B. (2002) Conformationally correct expression of membrane-anchored Toxoplasma gondii SAG1 in the primitive protozoan Giardia duodenalis. Infection and Immunity, 70(2), pp. 1014-1016. (doi: 10.1128/IAI.70.2.1014-1016.2002) (PMID:11796643) (PMCID:PMC127713)

Hehl, A. B., Marti, M. and Köhler, P. (2000) Stage-specific expression and targeting of cyst wall protein-green fluorescent protein chimeras in Giardia. Molecular Biology of the Cell, 11(5), pp. 1789-1800. (doi: 10.1091/mbc.11.5.1789) (PMID:10793152) (PMCID:PMC14884)

Subramanian, A. B., Navarro, S., Carrasco, R. A., Marti, M. and Das, S. (2000) Role of exogenous inositol and phosphatidylinositol in glycosylphosphatidylinositol anchor synthesis of GP49 by Giardia lamblia. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids, 1483(1), pp. 69-80. (doi: 10.1016/S1388-1981(99)00171-7) (PMID:10601696)

Book Sections

Kato, N., March, S., Bhatia, S. N. and Marti, M. (2018) Phenotypic screening of small molecules with antimalarial activity for three different parasitic life stages. In: Wagner, B. (ed.) Phenotypic Screening: Methods and Protocols. Series: Methods in molecular biology (1787). Humana Press: New York, NY, pp. 41-52. ISBN 9781493978465 (doi: 10.1007/978-1-4939-7847-2_3)

Spielmann, T., Marti, M. and Gilberger, T. W. (2014) Protein export. In: Kremsner, P. G. and Krishna, S. (eds.) Encyclopedia of Malaria. Springer: New York. ISBN 9781461487579 (doi: 10.1007/978-1-4614-8757-9_35-1)

This list was generated on Sat Jan 18 12:27:30 2025 GMT.

Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Defining molecular determinants of Plasmodium falciparum hematopoietic infection using single cell profiling and genetics
    EPSRC EU Guarantee
    2023 - 2025
     
  • Unravelling mechanisms of stage conversion in malaria parasites
    Wellcome Trust
    2023 - 2028
     
  • Defining molecular determinants of Plasmodium falciparum hematopoietic infection using singlecell profiling and genetics
    European Molecular Biology Organization
    2022 - 2023
     
  • Elucidating mechanisms of extracellular vesicle-mediated cellular communication and stage conversion in malaria parasites
    Wellcome Trust
    2021 - 2022
     
  • Dual multi-modal single-cell time course to unravel the role of macrophages in malaria tolerance
    Wellcome Trust
    2021 - 2023
     
  • Immunity development to human malaria
    The Royal Society
    2021 - 2022
     
  • Utilizing gametocyte immunity to reduce malaria transmission
    Medical Research Council
    2020 - 2024
     
  • Wolfson Infectious Diseases Research Facility
    The Royal Society
    2018 - 2019
     
  • BoneMalar
    European Research Council
    2016 - 2021
     
  • Elucidating mechanisms of extracellular vesiclemediated cellular communication and stage conversion in malaria parasites.
    Wellcome Trust
    2016 - 2021
     
  • COSMIC
    European Research Council
    2015 - 2020
     

Supervision

Research datasets

Jump to: 2021
Number of items: 1.

2021

Wickenhagen, A., Sugrue, E. , Lytras, S., Kuchi, S., Noerenberg, M. , Turnbull, M. , Loney, C. , Herder, V., Allan, J., Jarmson, I., Cameron Ruiz, N., Varjak, M. , Pinto, R. , Lee, J. Y., Iselin, L., Palmalux, N., Stewart, D., Swingler, S., Greenwood, E. J. D., Crozier, T. W. M., Gu, Q. , Davies, E., Clohisey, S., Wang, B., Trindade Maranhã Costa, F., Santana, M. F., Carlos de Lima Ferreira, L., Murphy, L., Fawkes, A., Meynert, A., Grimes, G., ISARICC investigators, , Da Silva Filho, J. , Marti, M. , Hughes, J. , Stanton, R. J., Wang, E. C. Y., Ho, A. , Davis, I., Jarrett, R. , Castello, A. , Robertson, D. , Semple, M. G., Openshaw, P. J. M., Palmarini, M. , Lehner, P. J., Baillie, K., Rihn, S. and Wilson, S. (2021) A Prenylated dsRNA Sensor Protects Against Severe COVID-19. [Data Collection]

This list was generated on Sat Jan 18 12:27:32 2025 GMT.