Professor Honghan Wu

  • Professor of Health Informatics and AI (Public Health)

Biography

I am a Professor of Health Informatics and AI at the School of Health and Wellbeing, University of Glasgow. I am a co-director of Health Data Research UK Scotland. I am also an honorary professor at Hong Kong University and an honorary associate professor at UCL. I am a former (2020-2023) Turing Fellow of The Alan Turing Institute and a Rutherford Fellow (2018-2022) of the Health Data Research UK. I got my BEng and PhD degrees from Southeast University, China. I worked in the industry for about six years primarily as a software developer before my PhD study.

My research lab website is at https://knowlab.github.io/, I also co-lead the Edinburgh Clinical Natural Language Processing group: https://www.ed.ac.uk/usher/clinical-natural-language-processing and co-organise the Turing Health Equity group: https://www.turing.ac.uk/research/interest-groups/health-equity.

Research interests

Machine learning, natural language processing, knowledge graph and their applications in medicine. Details of my research and team updates can be found at https://knowlab.github.io/.

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2022 | 2021
Number of items: 52.

2024

Gao, Y. et al. (2024) Optimising the paradigms of human AI collaborative clinical coding. npj Digital Medicine, 7, 368. (doi: 10.1038/s41746-024-01363-7) (PMID:39702575) (PMCID:PMC11659570)

Ji, S., Li, X., Sun, W., Dong, H., Taalas, A., Zhang, Y., Wu, H. , Pitkänen, E. and Marttinen, P. (2024) A unified review of deep learning for automated medical coding. ACM Computing Surveys, 56(12), 306. (doi: 10.1145/3664615)

Greene, C., Blackbourn, L., McGurnaghan, S., Mercer, S., Smith, D., Wild, S., Wu, H. , Jackson, C. and Scottish Diabetes Research Network Epidemiology Group, (2024) Antidepressant and antipsychotic prescribing in patients with type 2 diabetes in Scotland: a time-trend analysis from 2004-2021. British Journal of Clinical Pharmacology, 90(11), pp. 2802-2810. (doi: 10.1111/bcp.16171) (PMID:38981672)

Wu, J., Dong, H., Li, Z., Wang, H., Li, R., Patra, A., Dai, C., Ali, W., Scordis, P. and Wu, H. (2024) A hybrid framework with large language models for rare disease phenotyping. BMC Medical Informatics and Decision Making, 24(1), 289. (doi: 10.1186/s12911-024-02698-7) (PMID:39375687) (PMCID:PMC11460004)

Guellil, I., Andres, S., Guthrie, B., Anand, A., Zhang, H., Hasan, A.K., Wu, H. and Alex, B. (2024) Enhancing Natural Language Processing Capabilities in Geriatric Patient Care: An Annotation Scheme and Guidelines. In: 29th International Conference on Natural Language & Information Systems. NLDB 2024, University of Turin, Italy, 25-27 June 2024, pp. 207-217. ISBN 9783031702419 (doi: 10.1007/978-3-031-70242-6_20)

Kim, Y., Wu, J., Abdulle, Y., Gao, Y. and Wu, H. (2024) Human-in-the-Loop Chest X-Ray Diagnosis: Enhancing Large Multimodal Models with Eye Fixation Inputs. In: Second International Workshop, TAI4H 2024, Jeju, South Korea, 4 Aug 2024, pp. 66-80. ISBN 9783031677502 (doi: 10.1007/978-3-031-67751-9_6)

Wu, J., Kim, Y. and Wu, H. (2024) Hallucination benchmark in medical visual question answering. arXiv, (doi: 10.48550/arXiv.2401.05827)

Francis, F., Luz, S., Wu, H. , Stock, S. J. and Townsend, R. (2024) Machine learning on cardiotocography data to classify fetal outcomes: a scoping review. Computers in Biology and Medicine, 172, 108220. (doi: 10.1016/j.compbiomed.2024.108220) (PMID:38489990)

Feng, W., Wu, H. , Ma, H., Tao, Z., Xu, M., Zhang, X., Lu, S., Wan, C. and Liu, Y. (2024) Applying contrastive pre-training for depression and anxiety risk prediction in type 2 diabetes patients based on heterogeneous electronic health records: a primary healthcare case study. Journal of the American Medical Informatics Association, 31(2), pp. 445-455. (doi: 10.1093/jamia/ocad228) (PMID:38062850) (PMCID:PMC10797279)

Kim, Y. and Wu, H. (2024) Knowlab's Submission to L+M Shared Task: All you need is continued pretraining of chemistry texts even for molecule captioning. In: 1st Workshop on Language + Molecules (L+M 2024). Proceedings, Bangkok, 15 Aug 2024, pp. 92-97. ISBN 9798891761483 (doi: 10.18653/v1/2024.langmol-1.11)

Kim, Y., Wu, J., Abdulle, Y. and Wu, H. (2024) MedExQA: Medical Question Answering Benchmark with Multiple Explanations. In: Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Bangkok, Thailand, 16 Aug 2024, pp. 167-181. ISBN 9798891761308 (doi: 10.18653/v1/2024.bionlp-1.14)

2023

Fu, Y., Zhang, G., Lu, X., Wu, H. and Zhang, D. (2023) RMCA U-net: Hard exudates segmentation for retinal fundus images. Expert Systems with Applications, 234, 120987. (doi: 10.1016/j.eswa.2023.120987)

Groves, E., Wang, M., Abdulle, Y., Kunz, H., Hoelscher-Obermaier, J., Wu, R. and Wu, H. (2023) Benchmarking and analyzing in-context learning, fine-tuning and supervised learning for biomedical knowledge curation: a focused study on chemical entities of biological interest. arXiv, (doi: 10.48550/arXiv.2312.12989)

Wu, J., Kim, Y., Keller, E. C., Chow, J., Levine, A. P., Pontikos, N., Ibrahim, Z., Taylor, P., Williams, M. C. and Wu, H. (2023) Exploring multimodal large language models for radiology report error-checking. arXiv, (doi: 10.48550/arXiv.2312.13103)

Guellil, I. et al. (2023) Natural language processing for detecting adverse drug events: a systematic review protocol. [Protocols]

Francis, F., Luz, S., Wu, H. , Townsend, R. and Stock, S. S. (2023) Machine Learning to Classify Cardiotocography for Fetal Hypoxia Detection. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24-27 July 2023, ISBN 9798350324471 (doi: 10.1109/embc40787.2023.10340803)

Groza, T., Wu, H. , Dinger, M. E., Danis, D., Hilton, C., Bagley, A., Davids, J. R., Luo, L., Lu, Z. and Robinson, P. N. (2023) Term-BLAST-like alignment tool for concept recognition in noisy clinical texts. Bioinformatics, 39(12), btad716. (doi: 10.1093/bioinformatics/btad716) (PMID:38001031) (PMCID:PMC10710372)

Zhang, H., Casey, A., Guellil, I., Suárez-Paniagua, V., MacRae, C., Marwick, C., Wu, H. , Guthrie, B. and Alex, B. (2023) FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database. Frontiers in Digital Health, 5, 1186208. (doi: 10.3389/fdgth.2023.1186208) (PMID:38090654) (PMCID:PMC10715280)

Thygesen, J. H. et al. (2023) A nationwide study of 331 rare diseases among 58 million individuals: prevalence, demographics, and COVID-19 outcomes. medRxiv, (doi: 10.1101/2023.10.12.23296948)

Casey, A. et al. (2023) Understanding the performance and reliability of NLP tools: a comparison of four NLP tools predicting stroke phenotypes in radiology reports. Frontiers in Digital Health, 5, 1184919. (doi: 10.3389/fdgth.2023.1184919) (PMID:37840686) (PMCID:PMC10569314)

Alsaleh, M. M., Allery, F., Choi, J. W., JW, C., Hama, T., McQuillin, A., Wu, H. and Thygesen, J. H. (2023) Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review. International Journal of Medical Informatics, 175, 105088. (doi: 10.1016/j.ijmedinf.2023.105088) (PMID:37156169)

Wang, M., Kloczko, E., Altayeb, A., Farrugia, M., Gupta, G., Wu, H. and Hirani, N. (2023) Towards automated dermatology triage: deep learning and knowledge-driven approaches. Research Square, (doi: 10.21203/rs.3.rs-2889033/v1)

Greene, C. R.L., Ward-Penny, H., Ioannou, M. F., Wild, S. H., Wu, H. , Smith, D. J. and Jackson, C. A. (2023) Antidepressant and antipsychotic drug prescribing and diabetes outcomes: A systematic review of observational studies. Diabetes Research and Clinical Practice, 199, 110649. (doi: 10.1016/j.diabres.2023.110649) (PMID:37004975)

Dong, H., Suárez‑Paniagua, V., Zhang, H., Wang, M., Casey, A., Davidson, E., Chen, J., Alex, B., Whiteley, W. and Wu, H. (2023) Ontology-driven and weakly supervised rare disease identification from clinical notes. BMC Medical Informatics and Decision Making, 23, 86. (doi: 10.1186/s12911-023-02181-9) (PMID:37147628) (PMCID:PMC10162001)

Davidson, E. M. et al. (2023) The epidemiological characteristics of stroke phenotypes defined with ICD-10 and free-text: a cohort study linked to electronic health records. MedRxiv, (doi: 10.1101/2023.04.03.23288096)

Kuan, V. et al. (2023) Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study. Lancet Digital Health, 5(1), e16-e27. (doi: 10.1016/S2589-7500(22)00187-X) (PMID:36460578)

Ibrahim, Z., Wu, H. and Wiratunga, N. (2023) Preface: The 6th International Workshop on Knowledge Discovery in Healthcare Data (KDH). KDH@IJCAI 2023 Knowledge Discovery from Healthcare Data 2023, Macao, China, 20 Aug 2023.

Wu, J., Shi, D., Hasan, A. and Wu, H. (2023) KnowLab at RadSum23: Comparing Pre-trained Language Models in Radiology Report Summarization. In: The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Toronto, Canada, July 2023, pp. 535-540. ISBN 9781959429852 (doi: 10.18653/v1/2023.bionlp-1.54)

2022

Wu, H. et al. (2022) A survey on clinical natural language processing in the United Kingdom from 2007 to 2022. npj Digital Medicine, 5, 186. (doi: 10.1038/s41746-022-00730-6) (PMID:36544046) (PMCID:PMC9770568)

Dong, H., Falis, M., Whiteley, W., Alex, B., Matteson, J., Ji, S., Chen, J. and Wu, H. (2022) Automated clinical coding: what, why, and where we are? npj Digital Medicine, 5, 159. (doi: 10.1038/s41746-022-00705-7) (PMID:36273236) (PMCID:PMC9588058)

Guellil, I., Wu, J., Wu, H. , Sun, T. and Alex, B. (2022) Edinburgh_UCL_Health@SMM4H'22: From Glove to Flair for Handling Imbalanced Healthcare Corpora Related to Adverse Drug Events, Change in Medication and Self-reporting Vaccination. In: Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12-17 Oct 2022, pp. 148-152.

Chen, Q. et al. (2022) Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations. Database, 2022, baac069. (doi: 10.1093/database/baac069) (PMID:36043400) (PMCID:PMC9428574)

Wu, J., Smith, R. and Wu, H. (2022) Adverse Childhood Experiences identification from clinical notes with ontologies and NLP. arXiv, (doi: 10.48550/arXiv.2208.11466)

Wu, J., Smith, R. and Wu, H. (2022) Ontology-driven self-supervision for adverse childhood experiences identification using social media datasets. arXiv, (doi: 10.48550/arXiv.2208.11701)

Cheung, J. P. Y., Kuang, X., Lai, M. K. L., Cheung, K. M.‑C., Karppinen, J., Samartzis, D., Wu, H. , Zhao, F., Zheng, Z. and Zhang, T. (2022) Learning-based fully automated prediction of lumbar disc degeneration progression with specified clinical parameters and preliminary validation. European Spine Journal, 31(8), pp. 1960-1968. (doi: 10.1007/s00586-021-07020-x) (PMID:34657211)

Wan, C., Read, S., Wu, H. , Lu, S., Zhang, X., Wild, S. H. and Liu, Y. (2022) Prediction of five-year cardiovascular disease risk in people with type 2 diabetes mellitus: derivation in Nanjing, China and external validation in Scotland, UK. Global Heart, 17(1), 46. (doi: 10.5334/gh.1131) (PMID:36051323) (PMCID:PMC9336685)

Kuang, X. et al. (2022) Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation. Computerized Medical Imaging and Graphics, 99, 102091. (doi: 10.1016/j.compmedimag.2022.102091)

Thygesen, J. H. et al. (2022) COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records. Lancet Digital Health, 7(4), e542-e557. (doi: 10.1016/S2589-7500(22)00091-7) (PMID:35690576) (PMCID:PMC9179175)

Wu, H. , Sylolypavan, A., Wang, M. and Wild, S. (2022) Quantifying Health Inequalities Induced by Data and AI Models. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 23-29 July 2022, pp. 5192-5198. ISBN 9781956792003 (doi: 10.24963/ijcai.2022/721)

Straw, I. and Wu, H. (2022) Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction. BMJ Health Care Inform, 29, e100457. (doi: 10.1136/bmjhci-2021-100457) (PMID:35470133) (PMCID:PMC9039354)

Zhang, H., Thygesen, J. H., Shi, T., Gkoutos, G. V., Hemingway, H., Guthrie, B., Wu, H. and Genomics England Research Consortium, (2022) Increased COVID-19 mortality rate in rare disease patients: a retrospective cohort study in participants of the Genomics England 100,000 Genomes project. Orphanet Journal of Rare Diseases, 17, 166. (doi: 10.1186/s13023-022-02312-x) (PMID:35414031) (PMCID:PMC9003178)

Ibrahim, Z.M. et al. (2022) A knowledge distillation ensemble framework for predicting short- and long-term hospitalization outcomes from electronic health records data. IEEE Journal of Biomedical and Health Informatics, 26(1), pp. 423-435. (doi: 10.1109/JBHI.2021.3089287) (PMID:34129509)

Francis, F., Wu, H. , Luz, S., Townsend, R. and Stock, S. (2022) Detecting Intrapartum Fetal Hypoxia from Cardiotocography Using Machine Learning. In: 49th Computing in Cardiology Conference CinC 2022, Tampere, Finland, 4-7 Sept 2022, ISBN 9798350300970 (doi: 10.22489/CinC.2022.339)

Wang, M., Francis, F., Kunz, H., Zhang, X., Wan, C., Liu, Y., Taylor, P., Wild, S. H. and Wu, H. (2022) Artificial intelligence models for predicting cardiovascular diseases in people with type 2 diabetes: A systematic review. Intelligence-Based Medicine, 6, 100072. (doi: 10.1016/j.ibmed.2022.100072)

2021

Zhang, H., Thygesen, J. and Wu, H. (2021) Increased COVID-19 related mortality rate for patients with rare diseases: a retrospective cohort study with data from Genomics England. Lancet, 398(Sup 2), S95. (PMCID:PMC8617313)

Fairfield, C. J. et al. (2021) ToKSA - Tokenized Key Sentence Annotation - a novel method for rapid approximation of ground truth for natural language processing. medRxiv, (doi: 10.1101/2021.10.06.21264629)

Davidson, E. M. et al. (2021) The reporting quality of natural language processing studies: systematic review of studies of radiology reports. BMC Medical Imaging, 21, 142. (doi: 10.1186/s12880-021-00671-8) (PMID:34600486) (PMCID:PMC8487512)

Rannikmäe, R., Wu, H. , Tominey, S., Whiteley, W., Allen, N., Sudlow, C. and UK Biobank, (2021) Developing automated methods for disease subtyping in UK Biobank: an exemplar study on stroke. BMC Medical Informatics and Decision Making, 21, 191. (doi: 10.1186/s12911-021-01556-0) (PMID:34130677) (PMCID:PMC8204419)

Casey, A. et al. (2021) A systematic review of natural language processing applied to radiology reports. BMC Medical Informatics and Decision Making, 21, 179. (doi: 10.1186/s12911-021-01533-7) (PMID:34082729) (PMCID:PMC8176715)

Zhang, H., Ferguson, A., Robertson, G., Jiang, M., Zhang, T., Sudlow, C., Smith, K., Rannikmae, K. and Wu, H. (2021) Benchmarking network-based gene prioritization methods for cerebral small vessel disease. Briefings in Bioinformatics, 22(5), bbab006. (doi: 10.1093/bib/bbab006) (PMID:33634312) (PMCID:PMC8425308)

Dong, H., Suárez-Paniagua, V., Zhang, H., Wang, M., Whitfield, E. and Wu, H. (2021) Rare Disease Identification from Clinical Notes with Ontologies and Weak Supervision. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Online, 31 Oct--4 Nov 2021, pp. 2294-2298. ISBN 9781728111797 (doi: 10.1109/embc46164.2021.9630043)

Mirza, L. et al. (2021) Investigating the association between physical health comorbidities and disability in individuals with severe mental illness. European Psychiatry, 64(1), e77. (doi: 10.1192/j.eurpsy.2021.2255) (PMID:34842128) (PMCID:PMC8727716)

This list was generated on Tue Mar 25 09:48:58 2025 GMT.
Number of items: 52.

Articles

Gao, Y. et al. (2024) Optimising the paradigms of human AI collaborative clinical coding. npj Digital Medicine, 7, 368. (doi: 10.1038/s41746-024-01363-7) (PMID:39702575) (PMCID:PMC11659570)

Ji, S., Li, X., Sun, W., Dong, H., Taalas, A., Zhang, Y., Wu, H. , Pitkänen, E. and Marttinen, P. (2024) A unified review of deep learning for automated medical coding. ACM Computing Surveys, 56(12), 306. (doi: 10.1145/3664615)

Greene, C., Blackbourn, L., McGurnaghan, S., Mercer, S., Smith, D., Wild, S., Wu, H. , Jackson, C. and Scottish Diabetes Research Network Epidemiology Group, (2024) Antidepressant and antipsychotic prescribing in patients with type 2 diabetes in Scotland: a time-trend analysis from 2004-2021. British Journal of Clinical Pharmacology, 90(11), pp. 2802-2810. (doi: 10.1111/bcp.16171) (PMID:38981672)

Wu, J., Dong, H., Li, Z., Wang, H., Li, R., Patra, A., Dai, C., Ali, W., Scordis, P. and Wu, H. (2024) A hybrid framework with large language models for rare disease phenotyping. BMC Medical Informatics and Decision Making, 24(1), 289. (doi: 10.1186/s12911-024-02698-7) (PMID:39375687) (PMCID:PMC11460004)

Wu, J., Kim, Y. and Wu, H. (2024) Hallucination benchmark in medical visual question answering. arXiv, (doi: 10.48550/arXiv.2401.05827)

Francis, F., Luz, S., Wu, H. , Stock, S. J. and Townsend, R. (2024) Machine learning on cardiotocography data to classify fetal outcomes: a scoping review. Computers in Biology and Medicine, 172, 108220. (doi: 10.1016/j.compbiomed.2024.108220) (PMID:38489990)

Feng, W., Wu, H. , Ma, H., Tao, Z., Xu, M., Zhang, X., Lu, S., Wan, C. and Liu, Y. (2024) Applying contrastive pre-training for depression and anxiety risk prediction in type 2 diabetes patients based on heterogeneous electronic health records: a primary healthcare case study. Journal of the American Medical Informatics Association, 31(2), pp. 445-455. (doi: 10.1093/jamia/ocad228) (PMID:38062850) (PMCID:PMC10797279)

Fu, Y., Zhang, G., Lu, X., Wu, H. and Zhang, D. (2023) RMCA U-net: Hard exudates segmentation for retinal fundus images. Expert Systems with Applications, 234, 120987. (doi: 10.1016/j.eswa.2023.120987)

Groves, E., Wang, M., Abdulle, Y., Kunz, H., Hoelscher-Obermaier, J., Wu, R. and Wu, H. (2023) Benchmarking and analyzing in-context learning, fine-tuning and supervised learning for biomedical knowledge curation: a focused study on chemical entities of biological interest. arXiv, (doi: 10.48550/arXiv.2312.12989)

Wu, J., Kim, Y., Keller, E. C., Chow, J., Levine, A. P., Pontikos, N., Ibrahim, Z., Taylor, P., Williams, M. C. and Wu, H. (2023) Exploring multimodal large language models for radiology report error-checking. arXiv, (doi: 10.48550/arXiv.2312.13103)

Groza, T., Wu, H. , Dinger, M. E., Danis, D., Hilton, C., Bagley, A., Davids, J. R., Luo, L., Lu, Z. and Robinson, P. N. (2023) Term-BLAST-like alignment tool for concept recognition in noisy clinical texts. Bioinformatics, 39(12), btad716. (doi: 10.1093/bioinformatics/btad716) (PMID:38001031) (PMCID:PMC10710372)

Zhang, H., Casey, A., Guellil, I., Suárez-Paniagua, V., MacRae, C., Marwick, C., Wu, H. , Guthrie, B. and Alex, B. (2023) FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database. Frontiers in Digital Health, 5, 1186208. (doi: 10.3389/fdgth.2023.1186208) (PMID:38090654) (PMCID:PMC10715280)

Thygesen, J. H. et al. (2023) A nationwide study of 331 rare diseases among 58 million individuals: prevalence, demographics, and COVID-19 outcomes. medRxiv, (doi: 10.1101/2023.10.12.23296948)

Casey, A. et al. (2023) Understanding the performance and reliability of NLP tools: a comparison of four NLP tools predicting stroke phenotypes in radiology reports. Frontiers in Digital Health, 5, 1184919. (doi: 10.3389/fdgth.2023.1184919) (PMID:37840686) (PMCID:PMC10569314)

Alsaleh, M. M., Allery, F., Choi, J. W., JW, C., Hama, T., McQuillin, A., Wu, H. and Thygesen, J. H. (2023) Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review. International Journal of Medical Informatics, 175, 105088. (doi: 10.1016/j.ijmedinf.2023.105088) (PMID:37156169)

Wang, M., Kloczko, E., Altayeb, A., Farrugia, M., Gupta, G., Wu, H. and Hirani, N. (2023) Towards automated dermatology triage: deep learning and knowledge-driven approaches. Research Square, (doi: 10.21203/rs.3.rs-2889033/v1)

Greene, C. R.L., Ward-Penny, H., Ioannou, M. F., Wild, S. H., Wu, H. , Smith, D. J. and Jackson, C. A. (2023) Antidepressant and antipsychotic drug prescribing and diabetes outcomes: A systematic review of observational studies. Diabetes Research and Clinical Practice, 199, 110649. (doi: 10.1016/j.diabres.2023.110649) (PMID:37004975)

Dong, H., Suárez‑Paniagua, V., Zhang, H., Wang, M., Casey, A., Davidson, E., Chen, J., Alex, B., Whiteley, W. and Wu, H. (2023) Ontology-driven and weakly supervised rare disease identification from clinical notes. BMC Medical Informatics and Decision Making, 23, 86. (doi: 10.1186/s12911-023-02181-9) (PMID:37147628) (PMCID:PMC10162001)

Davidson, E. M. et al. (2023) The epidemiological characteristics of stroke phenotypes defined with ICD-10 and free-text: a cohort study linked to electronic health records. MedRxiv, (doi: 10.1101/2023.04.03.23288096)

Kuan, V. et al. (2023) Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study. Lancet Digital Health, 5(1), e16-e27. (doi: 10.1016/S2589-7500(22)00187-X) (PMID:36460578)

Wu, H. et al. (2022) A survey on clinical natural language processing in the United Kingdom from 2007 to 2022. npj Digital Medicine, 5, 186. (doi: 10.1038/s41746-022-00730-6) (PMID:36544046) (PMCID:PMC9770568)

Dong, H., Falis, M., Whiteley, W., Alex, B., Matteson, J., Ji, S., Chen, J. and Wu, H. (2022) Automated clinical coding: what, why, and where we are? npj Digital Medicine, 5, 159. (doi: 10.1038/s41746-022-00705-7) (PMID:36273236) (PMCID:PMC9588058)

Chen, Q. et al. (2022) Multi-label classification for biomedical literature: an overview of the BioCreative VII LitCovid Track for COVID-19 literature topic annotations. Database, 2022, baac069. (doi: 10.1093/database/baac069) (PMID:36043400) (PMCID:PMC9428574)

Wu, J., Smith, R. and Wu, H. (2022) Adverse Childhood Experiences identification from clinical notes with ontologies and NLP. arXiv, (doi: 10.48550/arXiv.2208.11466)

Wu, J., Smith, R. and Wu, H. (2022) Ontology-driven self-supervision for adverse childhood experiences identification using social media datasets. arXiv, (doi: 10.48550/arXiv.2208.11701)

Cheung, J. P. Y., Kuang, X., Lai, M. K. L., Cheung, K. M.‑C., Karppinen, J., Samartzis, D., Wu, H. , Zhao, F., Zheng, Z. and Zhang, T. (2022) Learning-based fully automated prediction of lumbar disc degeneration progression with specified clinical parameters and preliminary validation. European Spine Journal, 31(8), pp. 1960-1968. (doi: 10.1007/s00586-021-07020-x) (PMID:34657211)

Wan, C., Read, S., Wu, H. , Lu, S., Zhang, X., Wild, S. H. and Liu, Y. (2022) Prediction of five-year cardiovascular disease risk in people with type 2 diabetes mellitus: derivation in Nanjing, China and external validation in Scotland, UK. Global Heart, 17(1), 46. (doi: 10.5334/gh.1131) (PMID:36051323) (PMCID:PMC9336685)

Kuang, X. et al. (2022) Spine-GFlow: A hybrid learning framework for robust multi-tissue segmentation in lumbar MRI without manual annotation. Computerized Medical Imaging and Graphics, 99, 102091. (doi: 10.1016/j.compmedimag.2022.102091)

Thygesen, J. H. et al. (2022) COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records. Lancet Digital Health, 7(4), e542-e557. (doi: 10.1016/S2589-7500(22)00091-7) (PMID:35690576) (PMCID:PMC9179175)

Straw, I. and Wu, H. (2022) Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction. BMJ Health Care Inform, 29, e100457. (doi: 10.1136/bmjhci-2021-100457) (PMID:35470133) (PMCID:PMC9039354)

Zhang, H., Thygesen, J. H., Shi, T., Gkoutos, G. V., Hemingway, H., Guthrie, B., Wu, H. and Genomics England Research Consortium, (2022) Increased COVID-19 mortality rate in rare disease patients: a retrospective cohort study in participants of the Genomics England 100,000 Genomes project. Orphanet Journal of Rare Diseases, 17, 166. (doi: 10.1186/s13023-022-02312-x) (PMID:35414031) (PMCID:PMC9003178)

Ibrahim, Z.M. et al. (2022) A knowledge distillation ensemble framework for predicting short- and long-term hospitalization outcomes from electronic health records data. IEEE Journal of Biomedical and Health Informatics, 26(1), pp. 423-435. (doi: 10.1109/JBHI.2021.3089287) (PMID:34129509)

Wang, M., Francis, F., Kunz, H., Zhang, X., Wan, C., Liu, Y., Taylor, P., Wild, S. H. and Wu, H. (2022) Artificial intelligence models for predicting cardiovascular diseases in people with type 2 diabetes: A systematic review. Intelligence-Based Medicine, 6, 100072. (doi: 10.1016/j.ibmed.2022.100072)

Zhang, H., Thygesen, J. and Wu, H. (2021) Increased COVID-19 related mortality rate for patients with rare diseases: a retrospective cohort study with data from Genomics England. Lancet, 398(Sup 2), S95. (PMCID:PMC8617313)

Fairfield, C. J. et al. (2021) ToKSA - Tokenized Key Sentence Annotation - a novel method for rapid approximation of ground truth for natural language processing. medRxiv, (doi: 10.1101/2021.10.06.21264629)

Davidson, E. M. et al. (2021) The reporting quality of natural language processing studies: systematic review of studies of radiology reports. BMC Medical Imaging, 21, 142. (doi: 10.1186/s12880-021-00671-8) (PMID:34600486) (PMCID:PMC8487512)

Rannikmäe, R., Wu, H. , Tominey, S., Whiteley, W., Allen, N., Sudlow, C. and UK Biobank, (2021) Developing automated methods for disease subtyping in UK Biobank: an exemplar study on stroke. BMC Medical Informatics and Decision Making, 21, 191. (doi: 10.1186/s12911-021-01556-0) (PMID:34130677) (PMCID:PMC8204419)

Casey, A. et al. (2021) A systematic review of natural language processing applied to radiology reports. BMC Medical Informatics and Decision Making, 21, 179. (doi: 10.1186/s12911-021-01533-7) (PMID:34082729) (PMCID:PMC8176715)

Zhang, H., Ferguson, A., Robertson, G., Jiang, M., Zhang, T., Sudlow, C., Smith, K., Rannikmae, K. and Wu, H. (2021) Benchmarking network-based gene prioritization methods for cerebral small vessel disease. Briefings in Bioinformatics, 22(5), bbab006. (doi: 10.1093/bib/bbab006) (PMID:33634312) (PMCID:PMC8425308)

Mirza, L. et al. (2021) Investigating the association between physical health comorbidities and disability in individuals with severe mental illness. European Psychiatry, 64(1), e77. (doi: 10.1192/j.eurpsy.2021.2255) (PMID:34842128) (PMCID:PMC8727716)

Conference or Workshop Item

Ibrahim, Z., Wu, H. and Wiratunga, N. (2023) Preface: The 6th International Workshop on Knowledge Discovery in Healthcare Data (KDH). KDH@IJCAI 2023 Knowledge Discovery from Healthcare Data 2023, Macao, China, 20 Aug 2023.

Conference Proceedings

Guellil, I., Andres, S., Guthrie, B., Anand, A., Zhang, H., Hasan, A.K., Wu, H. and Alex, B. (2024) Enhancing Natural Language Processing Capabilities in Geriatric Patient Care: An Annotation Scheme and Guidelines. In: 29th International Conference on Natural Language & Information Systems. NLDB 2024, University of Turin, Italy, 25-27 June 2024, pp. 207-217. ISBN 9783031702419 (doi: 10.1007/978-3-031-70242-6_20)

Kim, Y., Wu, J., Abdulle, Y., Gao, Y. and Wu, H. (2024) Human-in-the-Loop Chest X-Ray Diagnosis: Enhancing Large Multimodal Models with Eye Fixation Inputs. In: Second International Workshop, TAI4H 2024, Jeju, South Korea, 4 Aug 2024, pp. 66-80. ISBN 9783031677502 (doi: 10.1007/978-3-031-67751-9_6)

Kim, Y. and Wu, H. (2024) Knowlab's Submission to L+M Shared Task: All you need is continued pretraining of chemistry texts even for molecule captioning. In: 1st Workshop on Language + Molecules (L+M 2024). Proceedings, Bangkok, 15 Aug 2024, pp. 92-97. ISBN 9798891761483 (doi: 10.18653/v1/2024.langmol-1.11)

Kim, Y., Wu, J., Abdulle, Y. and Wu, H. (2024) MedExQA: Medical Question Answering Benchmark with Multiple Explanations. In: Proceedings of the 23rd Workshop on Biomedical Natural Language Processing, Bangkok, Thailand, 16 Aug 2024, pp. 167-181. ISBN 9798891761308 (doi: 10.18653/v1/2024.bionlp-1.14)

Francis, F., Luz, S., Wu, H. , Townsend, R. and Stock, S. S. (2023) Machine Learning to Classify Cardiotocography for Fetal Hypoxia Detection. In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24-27 July 2023, ISBN 9798350324471 (doi: 10.1109/embc40787.2023.10340803)

Wu, J., Shi, D., Hasan, A. and Wu, H. (2023) KnowLab at RadSum23: Comparing Pre-trained Language Models in Radiology Report Summarization. In: The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Toronto, Canada, July 2023, pp. 535-540. ISBN 9781959429852 (doi: 10.18653/v1/2023.bionlp-1.54)

Guellil, I., Wu, J., Wu, H. , Sun, T. and Alex, B. (2022) Edinburgh_UCL_Health@SMM4H'22: From Glove to Flair for Handling Imbalanced Healthcare Corpora Related to Adverse Drug Events, Change in Medication and Self-reporting Vaccination. In: Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of Korea, 12-17 Oct 2022, pp. 148-152.

Wu, H. , Sylolypavan, A., Wang, M. and Wild, S. (2022) Quantifying Health Inequalities Induced by Data and AI Models. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 23-29 July 2022, pp. 5192-5198. ISBN 9781956792003 (doi: 10.24963/ijcai.2022/721)

Francis, F., Wu, H. , Luz, S., Townsend, R. and Stock, S. (2022) Detecting Intrapartum Fetal Hypoxia from Cardiotocography Using Machine Learning. In: 49th Computing in Cardiology Conference CinC 2022, Tampere, Finland, 4-7 Sept 2022, ISBN 9798350300970 (doi: 10.22489/CinC.2022.339)

Dong, H., Suárez-Paniagua, V., Zhang, H., Wang, M., Whitfield, E. and Wu, H. (2021) Rare Disease Identification from Clinical Notes with Ontologies and Weak Supervision. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Online, 31 Oct--4 Nov 2021, pp. 2294-2298. ISBN 9781728111797 (doi: 10.1109/embc46164.2021.9630043)

Protocols

Guellil, I. et al. (2023) Natural language processing for detecting adverse drug events: a systematic review protocol. [Protocols]

This list was generated on Tue Mar 25 09:48:58 2025 GMT.

Supervision

  • Xu, Chao
    Developing a risk stratification tool to detect ADHD in children and adolescents

Professional activities & recognition

Research fellowships

  • 2018 - 2022: Health Data Research UK

Editorial boards

  • 2021: BMC Medical Informatics and Decision Making
  • 2022: BMC Digital Health

Professional & learned societies

  • 2020 - 2023: Turing Fellow, Alan Turing Institute