Dr Si Chen
- Research Associate (Autonomous Systems & Connectivity)
The University of Glasgow uses cookies for analytics. Find out more about our Privacy policy.
Necessary cookies enable core functionality. The website cannot function properly without these cookies, and can only be disabled by changing your browser preferences.
Analytical cookies help us improve our website. We use Google Analytics. All data is anonymised.
Clarity helps us to understand our users’ behaviour by visually representing their clicks, taps and scrolling. All data is anonymised.
Zhang, M., Millar, M.-A., Chen, S., Ren, Y., Yu, Z. and Yu, J. (2024) Enhancing hourly heat demand prediction through artificial neural networks: a national level case study. Energy and AI, 15, 100315. (doi: 10.1016/j.egyai.2023.100315)
Couraud, B., Andoni, M. , Robu, V., Norbu, S., Chen, S. and Flynn, D. (2023) Responsive FLEXibility: a smart local energy system. Renewable and Sustainable Energy Reviews, 182, 113343. (doi: 10.1016/j.rser.2023.113343)
Ren, Y., Chen, S. and Marco, J. (2023) An adaptive power distribution scheme for hybrid energy storage system to reduce the battery energy throughput in electric vehicles. Transactions of the Institute of Measurement and Control, 45(7), pp. 1367-1381. (doi: 10.1177/01423312221138841)
Andoni, M. , Norbu, S., Couraud, B., Flynn, D. , Chen, S. and Robu, V. (2022) Decentralized Energy White Paper: Adaptive Local Energy Communities. [Research Reports or Papers]
Andoni, M. , Norbu, S., Couraud, B., Flynn, D. , Chen, S. and Robu, V. (2022) Democratising Energy: Placing citizens and communities at the heart of the energy revolution. [Research Reports or Papers]
Chen, S., Ren, Y., Friedrich, D., Yu, Z. and Yu, J. (2021) Prediction of office building electricity demand using artificial neural network by splitting the time horizon for different occupancy rates. Energy and AI, 5, 100093. (doi: 10.1016/j.egyai.2021.100093)
Chen, S., Friedrich, D. and Yu, Z. (2021) Optimal sizing of a grid independent renewable heating system for building decarbonisation. Frontiers in Energy Research, 9, 746268. (doi: 10.3389/fenrg.2021.746268)
Chen, S., Ren, Y., Friedrich, D., Yu, Z. and Yu, J. (2020) Sensitivity analysis to reduce duplicated features in ANN training for district heat demand prediction. Energy and AI, 2, 100028. (doi: 10.1016/j.egyai.2020.100028)
Chen, S., Friedrich, D., Yu, Z. and Yu, J. (2019) District heating network demand prediction using a physics-based energy model with Bayesian approach for parameter calibration. Energies, 12(18), 3408. (doi: 10.3390/en12183408)
Zhang, M., Millar, M.-A., Chen, S., Ren, Y., Yu, Z. and Yu, J. (2024) Enhancing hourly heat demand prediction through artificial neural networks: a national level case study. Energy and AI, 15, 100315. (doi: 10.1016/j.egyai.2023.100315)
Couraud, B., Andoni, M. , Robu, V., Norbu, S., Chen, S. and Flynn, D. (2023) Responsive FLEXibility: a smart local energy system. Renewable and Sustainable Energy Reviews, 182, 113343. (doi: 10.1016/j.rser.2023.113343)
Ren, Y., Chen, S. and Marco, J. (2023) An adaptive power distribution scheme for hybrid energy storage system to reduce the battery energy throughput in electric vehicles. Transactions of the Institute of Measurement and Control, 45(7), pp. 1367-1381. (doi: 10.1177/01423312221138841)
Chen, S., Ren, Y., Friedrich, D., Yu, Z. and Yu, J. (2021) Prediction of office building electricity demand using artificial neural network by splitting the time horizon for different occupancy rates. Energy and AI, 5, 100093. (doi: 10.1016/j.egyai.2021.100093)
Chen, S., Friedrich, D. and Yu, Z. (2021) Optimal sizing of a grid independent renewable heating system for building decarbonisation. Frontiers in Energy Research, 9, 746268. (doi: 10.3389/fenrg.2021.746268)
Chen, S., Ren, Y., Friedrich, D., Yu, Z. and Yu, J. (2020) Sensitivity analysis to reduce duplicated features in ANN training for district heat demand prediction. Energy and AI, 2, 100028. (doi: 10.1016/j.egyai.2020.100028)
Chen, S., Friedrich, D., Yu, Z. and Yu, J. (2019) District heating network demand prediction using a physics-based energy model with Bayesian approach for parameter calibration. Energies, 12(18), 3408. (doi: 10.3390/en12183408)
Andoni, M. , Norbu, S., Couraud, B., Flynn, D. , Chen, S. and Robu, V. (2022) Decentralized Energy White Paper: Adaptive Local Energy Communities. [Research Reports or Papers]
Andoni, M. , Norbu, S., Couraud, B., Flynn, D. , Chen, S. and Robu, V. (2022) Democratising Energy: Placing citizens and communities at the heart of the energy revolution. [Research Reports or Papers]