Dr Adam McKenzie

  • Royal Commission for the Exhibition of 1851 Research Fellow (Electronic & Nanoscale Engineering)

Publications

List by: Type | Date

Jump to: 2024 | 2023 | 2021 | 2020
Number of items: 9.

2024

Bian, Z. et al. (2024) Resonator embedded photonic crystal surface emitting lasers. npj Nanophotonics, 1, 13. (doi: 10.1038/s44310-024-00014-9)

2023

Orchard, J. R., Ivanov, P., McKenzie, A. F. , Hill, C. H., Javed, I., Munro, C. W., Kettle, J., Hogg, R. A. , Childs, D. T.E. and Taylor, R. J.E. (2023) Small signal modulation of photonic crystal surface emitting lasers. Scientific Reports, 13(1), 19019. (doi: 10.1038/s41598-023-45414-7) (PMID:37923793) (PMCID:PMC10624890)

Zhao, X., McKenzie, A. , Munro, C. W., Hill, K. J., Kim, D. , Bayliss, S. L. , Gerrard, N. D., MacLaren, D. A. and Hogg, R. A. (2023) Large-area 2D selective area growth for photonic crystal surface emitting lasers. Journal of Crystal Growth, 603, 127036. (doi: 10.1016/j.jcrysgro.2022.127036)

McKenzie, A. F. , Kyaw, A. M., Gerrard, N. D., MacLaren, D. A. and Hogg, R. A. (2023) Kinetic influences on void formation in epitaxially regrown GaAs-based PCSELs. Journal of Crystal Growth, 602, 126969. (doi: 10.1016/j.jcrysgro.2022.126969)

2021

Bian, Z. et al. (2021) Comparative analysis of void-containing and all-semiconductor 1.5 μm InP-based photonic crystal surface-emitting laser diodes. AIP Advances, 11(6), 065315. (doi: 10.1063/5.0053535)

McKenzie, A. F. et al. (2021) Void engineering in epitaxially regrown GaAs-based photonic crystal surface emitting lasers by grating profile design. Applied Physics Letters, 118(2), 021109. (doi: 10.1063/5.0035038)

King, B. C. et al. (2021) Coherent power scaling in photonic crystal surface emitting laser arrays. AIP Advances, 11(1), 015017. (doi: 10.1063/5.0031158)

2020

Bian, Z. et al. (2020) 1.5 μm epitaxially regrown photonic crystal surface emitting laser diode. IEEE Photonics Technology Letters, 32(24), pp. 1531-1534. (doi: 10.1109/LPT.2020.3039059)

Fraser, J. P. et al. (2020) Selective phase growth and precise-layer control in MoTe2. Communications Materials, 1, 48. (doi: 10.1038/s43246-020-00048-4)

This list was generated on Sat Nov 23 10:20:50 2024 GMT.
Jump to: Articles
Number of items: 9.

Articles

Bian, Z. et al. (2024) Resonator embedded photonic crystal surface emitting lasers. npj Nanophotonics, 1, 13. (doi: 10.1038/s44310-024-00014-9)

Orchard, J. R., Ivanov, P., McKenzie, A. F. , Hill, C. H., Javed, I., Munro, C. W., Kettle, J., Hogg, R. A. , Childs, D. T.E. and Taylor, R. J.E. (2023) Small signal modulation of photonic crystal surface emitting lasers. Scientific Reports, 13(1), 19019. (doi: 10.1038/s41598-023-45414-7) (PMID:37923793) (PMCID:PMC10624890)

Zhao, X., McKenzie, A. , Munro, C. W., Hill, K. J., Kim, D. , Bayliss, S. L. , Gerrard, N. D., MacLaren, D. A. and Hogg, R. A. (2023) Large-area 2D selective area growth for photonic crystal surface emitting lasers. Journal of Crystal Growth, 603, 127036. (doi: 10.1016/j.jcrysgro.2022.127036)

McKenzie, A. F. , Kyaw, A. M., Gerrard, N. D., MacLaren, D. A. and Hogg, R. A. (2023) Kinetic influences on void formation in epitaxially regrown GaAs-based PCSELs. Journal of Crystal Growth, 602, 126969. (doi: 10.1016/j.jcrysgro.2022.126969)

Bian, Z. et al. (2021) Comparative analysis of void-containing and all-semiconductor 1.5 μm InP-based photonic crystal surface-emitting laser diodes. AIP Advances, 11(6), 065315. (doi: 10.1063/5.0053535)

McKenzie, A. F. et al. (2021) Void engineering in epitaxially regrown GaAs-based photonic crystal surface emitting lasers by grating profile design. Applied Physics Letters, 118(2), 021109. (doi: 10.1063/5.0035038)

King, B. C. et al. (2021) Coherent power scaling in photonic crystal surface emitting laser arrays. AIP Advances, 11(1), 015017. (doi: 10.1063/5.0031158)

Bian, Z. et al. (2020) 1.5 μm epitaxially regrown photonic crystal surface emitting laser diode. IEEE Photonics Technology Letters, 32(24), pp. 1531-1534. (doi: 10.1109/LPT.2020.3039059)

Fraser, J. P. et al. (2020) Selective phase growth and precise-layer control in MoTe2. Communications Materials, 1, 48. (doi: 10.1038/s43246-020-00048-4)

This list was generated on Sat Nov 23 10:20:50 2024 GMT.