Professor Jen Morton
- Professor (Beatson Institute for Cancer Research)
telephone:
01413302802
email:
Jennifer.Morton@glasgow.ac.uk
Beaston Institute, Cancer Sci & Molecular Pathology, Level 4
Research interests
Research groups
- Cancer Hallmarks to Novel Therapies
- Cancer Evolution in Time & Space
- Immunology & Cancer
- Comprehensive Cancer Models
- Re-imagining Radiotherapy
Publications
2024
Walker, M. and Morton, J. P. (2024) Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophysical Reviews, (doi: 10.1007/s12551-024-01265-8) (Early Online Publication)
2023
Whyte, D. et al. (2023) NUAK1 governs centrosome replication in pancreatic cancer via MYPT1/PP1β and GSK3β-dependent regulation of PLK4. Molecular Oncology, 17(7), pp. 1212-1227. (doi: 10.1002/1878-0261.13425) (PMID:36975767) (PMCID:PMC10323901)
Conway, J. R. W. et al. (2023) Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. Science Advances, 9(17), eadf9063. (doi: 10.1126/sciadv.adf9063) (PMID:37126544) (PMCID:PMC10132756)
Barry, S. T., Gabrilovich, D. I., Sansom, O. J. , Campbell, A. D. and Morton, J. P. (2023) Therapeutic targeting of tumour myeloid cells. Nature Reviews Cancer, 23(4), pp. 216-237. (doi: 10.1038/s41568-022-00546-2) (PMID:36747021)
Coetzee, A. S. et al. (2023) Nuclear FGFR1 promotes pancreatic stellate cell-driven invasion through up-regulation of Neuregulin 1. Oncogene, 42(7), pp. 419-500. (doi: 10.1038/s41388-022-02513-5) (PMID:36357571) (PMCID:PMC9918430)
2022
Ali, A. et al. (2022) Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. American Journal of Cancer Research, 12(12), pp. 5668-5683. (PMID:36628279) (PMCID:PMC9827095)
Bellomo, G. et al. (2022) Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 71(11), pp. 2284-2299. (doi: 10.1136/gutjnl-2021-325272) (PMID:35022267) (PMCID:PMC9554050)
Ismail, N. F. B., Foth, M., Yousef, A. R. E., Cui, N., Leach, J. D.G., Jamieson, T., Karim, S. A., Salmond, J. M., Morton, J. P. and Iwata, T. (2022) Loss of Cxcr2 in myeloid cells promotes tumour progression and T cell infiltration in invasive bladder cancer. Bladder Cancer, 8(3), pp. 277-290. (doi: 10.3233/BLC-211645)
Vaziri-Gohar, A. et al. (2022) Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 3(7), pp. 852-865. (doi: 10.1038/s43018-022-00393-y) (PMID:35681100) (PMCID:PMC9325670)
Kidger, A. M. et al. (2022) Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 41(20), pp. 2811-2823. (doi: 10.1038/s41388-022-02302-0) (PMID:35418690) (PMCID:PMC9106580)
2021
Falcomata, C. et al. (2021) Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer. Cancer Discovery, 11(12), pp. 3158-3177. (doi: 10.1158/2159-8290.CD-21-0209) (PMID:34282029) (PMCID:PMC7612573)
Murphy, K. J. et al. (2021) Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 7(40), eabh0363. (doi: 10.1126/sciadv.abh0363) (PMID:34586840) (PMCID:PMC8480933)
Nielsen, S. R. et al. (2021) Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 12, 3414. (doi: 10.1038/s41467-021-23731-7) (PMID:34099731) (PMCID:PMC8184753)
Nacke, M. et al. (2021) An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 12, 1623. (doi: 10.1038/s41467-021-21847-4) (PMID:33712589) (PMCID:PMC7955138)
Race, A. M. et al. (2021) Deep learning-based annotation transfer between molecular imaging modalities: an automated workflow for multimodal data integration. Analytical Chemistry, 93(6), pp. 3061-3071. (doi: 10.1021/acs.analchem.0c02726) (PMID:33534548)
Latif, A.-L. et al. (2021) BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 12, 241. (doi: 10.1038/s41467-020-20378-8) (PMID:33431824) (PMCID:PMC7801601)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
Morton, J. P. and Watt, D. M. (2021) Heterogeneity in the pancreatic cancer microenvironment – TGFβ as a master regulator? Cancers, 13(19), 4984. (doi: 10.3390/cancers13194984) (PMID:34638468) (PMCID:PMC8508541)
2020
Ahmed, A. A. et al. (2020) Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Medicinal Chemistry Letters, 11(8), pp. 1634-1644. (doi: 10.1021/acsmedchemlett.0c00317) (PMID:32832034) (PMCID:PMC7429975)
Muthalagu, N. et al. (2020) Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma. Cancer Discovery, 10(6), pp. 872-887. (doi: 10.1158/2159-8290.CD-19-0620) (PMID:32200350) (PMCID:PMC7611248)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Michalopoulou, E., Auciello, F. R., Bulusu, V., Strachan, D., Campbell, A. D., Tait-Mulder, J., Karim, S. A., Morton, J. P. , Sansom, O. J. and Kamphorst, J. J. (2020) Macropinocytosis renders a subset of pancreatic tumor cells resistant to mTOR inhibition. Cell Reports, 30(8), 2729-2742.e4. (doi: 10.1016/j.celrep.2020.01.080) (PMID:32101748) (PMCID:PMC7043007)
Blagih, J. et al. (2020) Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Reports, 30(2), 481-496.e6. (doi: 10.1016/j.celrep.2019.12.028) (PMID:31940491) (PMCID:31940491)
Dreyer, S.B., Jamieson, N.B. , Morton, J.P. , Sansom, O.J. , Biankin, A.V. and Chang, D.K. (2020) Pancreatic cancer: from genome discovery to PRECISION-Panc. Clinical Oncology, 32(1), pp. 5-8. (doi: 10.1016/j.clon.2019.08.007) (PMID:31522943)
2019
Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)
Pereira, B. A., Vennin, C., Papanicolaou, M., Chambers, C. R., Herrmann, D., Morton, J. P. , Cox, T. R. and Timpson, P. (2019) CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer. Trends in Cancer, 5(11), pp. 724-741. (doi: 10.1016/j.trecan.2019.09.010) (PMID:31735290)
Bott, A. J. et al. (2019) Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Reports, 29(5), 1287-1298.e6. (doi: 10.1016/j.celrep.2019.09.056) (PMID:31665640) (PMCID:PMC6886125)
Vennin, C. et al. (2019) CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 10, 3637. (doi: 10.1038/s41467-019-10968-6) (PMID:31406163) (PMCID:PMC6691013)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Hari, P. et al. (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 5(6), eaaw0254. (doi: 10.1126/sciadv.aaw0254) (PMID:31183403) (PMCID:PMC6551188)
Halbrook, C. J. et al. (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metabolism, 29(6), 1390-1399.e6. (doi: 10.1016/j.cmet.2019.02.001) (PMID:30827862) (PMCID:PMC6602533)
Leach, J., Morton, J. P. and Sansom, O. J. (2019) Neutrophils: homing in on the myeloid mechanisms of metastasis. Molecular Immunology, 110, pp. 69-76. (doi: 10.1016/j.molimm.2017.12.013) (PMID:29269005) (PMCID:PMC6544568)
Auciello, F. R. et al. (2019) A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9(5), pp. 617-627. (doi: 10.1158/2159-8290.CD-18-1212) (PMID:30837243) (PMCID:PMC6497553)
Conway, J. R.W., Herrmann, D., Evans, T.R. J. , Morton, J. P. and Timpson, P. (2019) Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 68(4), pp. 742-758. (doi: 10.1136/gutjnl-2018-316822) (PMID:30396902) (PMCID:PMC6580874)
Allen-Petersen, B. L. et al. (2019) Activation of PP2A and Inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma. Cancer Research, 79(1), pp. 209-219. (doi: 10.1158/0008-5472.CAN-18-0717) (PMID:30389701) (PMCID:PMC6318036)
2018
Chou, A. et al. (2018) Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 67(12), pp. 2142-2155. (doi: 10.1136/gutjnl-2017-315144) (PMID:29080858) (PMCID:PMC6241608)
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Mackay, H. L. et al. (2018) Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nature Communications, 9, 3070. (doi: 10.1038/s41467-018-05368-1) (PMID:30076358) (PMCID:PMC6076230)
Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)
Conway, J. R.W. et al. (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Reports, 23(11), pp. 3312-3326. (doi: 10.1016/j.celrep.2018.05.038) (PMID:29898401) (PMCID:PMC6019737)
Godfrey, J. D., Morton, J. P. , Wilczynska, A., Sansom, O. J. and Bushell, M. D. (2018) MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death and Disease, 9(6), 644. (doi: 10.1038/s41419-018-0628-4) (PMID:29844410) (PMCID:PMC5973943)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Meiser, J. et al. (2018) Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 9, 1368. (doi: 10.1038/s41467-018-03777-w) (PMID:29636461) (PMCID:PMC5893600)
Marchetti, C. et al. (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. Journal of Medicinal Chemistry, 61(6), pp. 2500-2517. (doi: 10.1021/acs.jmedchem.7b01781) (PMID:29356532) (PMCID:PMC5867665)
Vennin, C., Murphy, K. J., Morton, J. P. , Cox, T. R., Pajic, M. and Timpson, P. (2018) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology, 154(4), pp. 820-838. (doi: 10.1053/j.gastro.2017.11.280) (PMID:29287624)
Schofield, H. K. et al. (2018) Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 3(2), e97422. (doi: 10.1172/jci.insight.97422) (PMID:29367463) (PMCID:PMC5821189)
2017
Conway, J. R.W. et al. (2017) Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 7, 16887. (doi: 10.1038/s41598-017-17177-5) (PMID:29203823) (PMCID:PMC5715059)
Farrell, A. S. et al. (2017) MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 8, 1728. (doi: 10.1038/s41467-017-01967-6) (PMID:29170413) (PMCID:PMC5701042)
Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)
Chuvin, N. et al. (2017) Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 4(2), pp. 263-282. (doi: 10.1016/j.jcmgh.2017.05.005) (PMID:28752115) (PMCID:PMC5524227)
Harris, N.L.E. et al. (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 36(30), pp. 4288-4298. (doi: 10.1038/onc.2017.63) (PMID:28346421) (PMCID:PMC5537606)
Rice, A.J., Cortes, E., Lachowski, D., Cheung, B.C.H., Karim, S.A., Morton, J.P. and Del Rio Hernandez, A. (2017) Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis, 6(7), e352. (doi: 10.1038/oncsis.2017.54) (PMID:28671675) (PMCID:PMC5541706)
Rosenfeldt, M. T., O'Prey, J., Flossbach, L., Nixon, C., Morton, J. P. , Sansom, O. J. and Ryan, K. M. (2017) PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death and Differentiation, 24(7), pp. 1303-1304. (doi: 10.1038/cdd.2016.120) (PMID:28106883)
Lachowski, D., Cortes, E., Pink, D., Chronopoulos, A., Karim, S. A., Morton, J. P. and del Río Hernández, A. E. (2017) Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Scientific Reports, 7, 2506. (doi: 10.1038/s41598-017-02689-x) (PMID:28566691) (PMCID:PMC5451433)
Vennin, C. et al. (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 9(384), eaai8504. (doi: 10.1126/scitranslmed.aai8504) (PMID:28381539) (PMCID:PMC5777504)
Gundry, C. et al. (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 8, 14646. (doi: 10.1038/ncomms14646) (PMID:28294115) (PMCID:PMC5355957)
Rath, N. et al. (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 9(2), pp. 198-218. (doi: 10.15252/emmm.201606743) (PMID:28031255) (PMCID:PMC5286371)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
Morton, J. P. and Sansom, O. J. (2017) CXCR2 inhibition in pancreatic cancer: opportunities for immunotherapy? Immunotherapy, 9(1), pp. 9-12. (doi: 10.2217/imt-2016-0115) (PMID:28000523)
Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M. C., Morton, J. P. , Sansom, O. J. , Zender, L. and Keyes, W. M. (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes and Development, 31(2), pp. 172-183. (doi: 10.1101/gad.290635.116) (PMID:28143833)
2016
Driscoll, D. R. et al. (2016) mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), pp. 6911-6923. (doi: 10.1158/0008-5472.CAN-16-0810) (PMID:27758884) (PMCID:PMC5135633)
Guest, R. V. et al. (2016) Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 113(43), pp. 12250-12255. (doi: 10.1073/pnas.1600067113) (PMID:27791012) (PMCID:PMC5086988)
Lesina, M. et al. (2016) RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. Journal of Clinical Investigation, 126(8), pp. 2919-2932. (doi: 10.1172/jci86477) (PMID:27454298)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Matzke-Ogi, A. et al. (2016) Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology, 150(2), 513-525.e10. (doi: 10.1053/j.gastro.2015.10.020) (PMID:26597578)
Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)
2015
Gopinathan, A., Morton, J. P. , Jodrell, D. I. and Sansom, O. J. (2015) GEMMs as preclinical models for testing pancreatic cancer therapies. Disease Models and Mechanisms, 8(10), pp. 1185-1200. (doi: 10.1242/dmm.021055) (PMID:26438692) (PMCID:PMC4610236)
Steele, C. et al. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. Journal of Pathology, 237(1), pp. 85-97. (doi: 10.1002/path.4555) (PMID:25950520)
Dikovskaya, D. et al. (2015) Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest. Cell Reports, 12(9), pp. 1483-1496. (doi: 10.1016/j.celrep.2015.07.055) (PMID:26299965) (PMCID:PMC4562906)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
2014
Morran, D. C. et al. (2014) Targeting mTOR dependency in pancreatic cancer. Gut, 63(9), pp. 1481-1489. (doi: 10.1136/gutjnl-2013-306202) (PMID:24717934) (PMCID:PMC4145424)
Walz, S. et al. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 511(7510), pp. 483-487. (doi: 10.1038/nature13473) (PMID:25043018) (PMCID:PMC6879323)
Hamilton, G. et al. (2014) AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 5(15), pp. 6142-6167. (doi: 10.18632/oncotarget.2178) (PMID:25071014) (PMCID:PMC4171619)
Li, A. et al. (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386-1396.e17. (doi: 10.1053/j.gastro.2014.01.046) (PMID:24462734) (PMCID:PMC4000441)
Johnsson, A.-K. E. et al. (2014) The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Reports, 6(6), pp. 1153-1164. (doi: 10.1016/j.celrep.2014.02.024)
Arjonen, A. et al. (2014) Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), pp. 1069-1082. (doi: 10.1172/JCI67280) (PMID:24487586) (PMCID:PMC3934176)
Ali, A. et al. (2014) Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clinical Pathology, 14, p. 35. (doi: 10.1186/1472-6890-14-35)
Herrmann, D., Conway, J.R.W., Vennin, C., Magenau, A., Hughes, W.E., Morton, J.P. and Timpson, P. (2014) Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 35(8), pp. 1671-1679. (doi: 10.1093/carcin/bgu108)
Muthalagu, N., Junttila, M. R., Wiese, K. E., Wolf, E., Morton, J. , Bauer, B., Evan, G. I., Eilers, M. and Murphy, D. J. (2014) BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Reports, 8(5), pp. 1347-1353. (doi: 10.1016/j.celrep.2014.07.057)
Nobis, M., McGhee, E. J., Herrmann, D., Magenau, A., Morton, J. P., Anderson, K. I. and Timpson, P. (2014) Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adhesion and Migration, 8(5), pp. 478-486. (doi: 10.4161/19336918.2014.970004)
Tan, E.H., Morton, J.P. , Timpson, P., Tucci, P., Melino, G., Flores, E.R., Sansom, O.J. , Vousden, K.H. and Muller, P.A.J. (2014) Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene, 33, pp. 3325-3333. (doi: 10.1038/onc.2013.287) (PMID:23873029) (PMCID:PMC4181588)
2013
Nobis, M., Carragher, N.O., McGhee, E.J., Morton, J.P. , Sansom, O.J. , Anderson, K.I. and Timpson, P. (2013) Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS Journal, 280(21), pp. 5177-5197. (doi: 10.1111/febs.12348)
Denley, S.M., Jamieson, N.B. , McCall, P., Oien, K.C.S. , Morton, J.P. , Carter, C.R., Edwards, J. and McKay, C.J. (2013) Activation of the IL-6R/Jak/Stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Surgery, 17(5), pp. 887-898. (doi: 10.1007/s11605-013-2168-7)
Morton, J. and Sansom, O.J. (2013) MYC-y mice: From tumour initiation to therapeutic targeting of endogenous MYC. Molecular Oncology, 7(2), pp. 248-258. (doi: 10.1016/j.molonc.2013.02.015)
Steele, C.W., Jamieson, N.B. , Evans, T.R.J. , McKay, C.J., Sansom, O.J. , Morton, J. and Carter, C.R. (2013) Exploiting inflammation for therapeutic gain in pancreatic cancer. British Journal of Cancer, 108(5), pp. 997-1003. (doi: 10.1038/bjc.2013.24)
Muller, P.A.J. et al. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 32(10), pp. 1252-1265. (doi: 10.1038/onc.2012.148)
Acosta, J.C. et al. (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15, pp. 978-990. (doi: 10.1038/ncb2784)
Karim, S.A., Creedon, H., Patel, H., Carragher, N.O., Morton, J.P. , Muller, W.J., Evans, T.R.J. , Gusterson, B., Sansom, O.J. and Brunton, V.G. (2013) Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. Journal of Pathology, 230(4), pp. 430-440. (doi: 10.1002/path.4202)
Nobis, M. et al. (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Research, 73(15), pp. 4674-4686. (doi: 10.1158/0008-5472.CAN-12-4545)
Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479), pp. 296-300. (doi: 10.1038/nature12865)
2012
Blyth, K. , Morton, J.P. and Sansom, O.J. (2012) The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model? Current Opinion in Genetics and Development, 22(1), pp. 28-35. (doi: 10.1016/j.gde.2012.02.009)
Dozynkiewicz, M.A. et al. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Developmental Cell, 22(1), pp. 131-145. (doi: 10.1016/j.devcel.2011.11.008)
Jamieson, N. B. , Morran, D. C., Morton, J. P., Ali, A., Dickson, E. J., Carter, C. R., Sansom, O. J. , Evans, T. R. J. , McKay, C. J. and Oien, K. A. (2012) MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clinical Cancer Research, 18(2), pp. 534-545. (doi: 10.1158/1078-0432.CCR-11-0679)
Sandilands, E. et al. (2012) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 14(1), pp. 51-60. (doi: 10.1038/ncb2386)
2011
Kennedy, A.l. et al. (2011) Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 42(1), pp. 36-49. (doi: 10.1016/j.molcel.2011.02.020)
Ahmad, I. et al. (2011) β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 30(2), pp. 178-189. (doi: 10.1038/onc.2010.399)
Kennedy, A. L., Adams, P. D. and Morton, J. P. (2011) Ras, PI3K/Akt and senescence: paradoxes provide clues for pancreatic cancer therapy. Small GTPases, 2(5), pp. 264-267. (doi: 10.4161/sgtp.2.5.17367) (PMID:22292129) (PMCID:PMC3265817)
Lindsay, C.C.R. et al. (2011) P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2, pp. 1-9. (doi: 10.1038/ncomms1560)
McGhee, E. J., Morton, J. P. , Von Kriegsheim, A., Schwarz, J. P., Karim, S. A., Carragher, N. O., Sansom, O. , Anderson, K. I. and Timpson, P. (2011) FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases, 2(4), pp. 239-244. (doi: 10.4161/sgtp.2.4.17275) (PMID:22145098) (PMCID:PMC3225915)
Morton, J.P., Myant, K.B. and Sansom, O.J. (2011) A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), pp. 173-175. (doi: 10.4161/cc.10.2.14350)
Morton, J.P. , Steele, C.W. and Sansom, O.J. (2011) Timing Is Everything: Brca2 and p53 Mutations in Pancreatic Cancer. Gastroenterology, 140(4), pp. 1143-1146. (doi: 10.1053/j.gastro.2011.02.026)
Timpson, P. et al. (2011) Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 71(3), pp. 747-757. (doi: 10.1158/0008-5472.CAN-10-2267)
2010
Doyle, B., Morton, J. P. , Delaney, D. W., Ridgway, R. A., Wilkins, J. A. and Sansom, O. J. (2010) p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. Journal of Pathology, 222(2), pp. 129-137. (doi: 10.1002/path.2748) (PMID:20662002)
Morton, J.P. et al. (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(1), pp. 246-251. (doi: 10.1073/pnas.0908428107)
Ashton, G.H. et al. (2010) Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 19(2), pp. 259-269. (doi: 10.1016/j.devcel.2010.07.015)
Morton, J. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139(2), 586-597.e6. (doi: 10.1053/j.gastro.2010.04.055)
Morton, J.P. et al. (2010) Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 139(1), pp. 292-303. (doi: 10.1053/j.gastro.2010.03.034)
2009
Wellner, U. et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487-U236. (doi: 10.1038/ncb1998) (PMID:19935649)
2008
Morton, J. P. , Klimstra, D. S., Mongeau, M. E. and Lewis, B. C. (2008) Trp53 deletion stimulates the formation of metastatic pancreatic tumors. American Journal of Pathology, 172(4), pp. 1081-1087. (doi: 10.2353/ajpath.2008.070778) (PMID:18310506) (PMCID:PMC2276406)
2007
Morton, J.P. , Kantidakis, T. and White, R.J. (2007) RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Research, 35(9), pp. 3046-3052. (doi: 10.1093/nar/gkm208)
Morton, J. P. , Mongeau, M. E., Klimstra, D. S., Morris, J. P., Lee, Y. C., Kawaguchi, Y., Wright, C. V.E., Hebrok, M. and Lewis, B. C. (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(12), pp. 5103-5108. (doi: 10.1073/pnas.0701158104) (PMID:17372229) (PMCID:PMC1828712)
Morton, J. P. and Lewis, B. C. (2007) Shh signaling and pancreatic cancer: implications for therapy? Cell Cycle, 6(13), pp. 1553-1557. (doi: 10.4161/cc.6.13.4467) (PMID:17611415)
2005
Daly, N.L., Arvanitis, D.A., Fairley, J.A., Gomez-Roman, N. , Morton, J.P. , Graham, S.V., Spandidos, D.A. and White, R.J. (2005) Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene, 24, pp. 880-888. (doi: 10.1038/sj.onc.1208031)
2003
Crighton, D., Woiwode, A., Zhang, C., Mandavia, N., Morton, J. P. , Warnock, L. J., Milner, J., White, R. J. and Johnson, D. L. (2003) p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO Journal, 22(11), pp. 2810-2820. (doi: 10.1093/emboj/cdg265) (PMID:12773395) (PMCID:PMC156762)
2002
Johnston, I.M., Allison, S.J., Morton, J.P. , Schramm, L., Scott, P.H. and White, R.J. (2002) CK2 forms a stable complex with TFIII3 and activates RNA polymerase III transcription in human cells. Molecular and Cellular Biology, 22, pp. 3757-3768. (doi: 10.1128/MCB.22.11.3757-3768.2002)
2000
Cameron, E.R. , Morton, J. , Johnston, C.J., Irvine, J., Bell, M., Onions, D.E., Neil, J.C. , Campbell, M. and Blyth, K. (2000) Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene. Cell Death and Differentiation, 7(1), pp. 80-88. (doi: 10.1038/sj.cdd.4400630) (PMID:10713723)
Articles
Walker, M. and Morton, J. P. (2024) Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophysical Reviews, (doi: 10.1007/s12551-024-01265-8) (Early Online Publication)
Whyte, D. et al. (2023) NUAK1 governs centrosome replication in pancreatic cancer via MYPT1/PP1β and GSK3β-dependent regulation of PLK4. Molecular Oncology, 17(7), pp. 1212-1227. (doi: 10.1002/1878-0261.13425) (PMID:36975767) (PMCID:PMC10323901)
Conway, J. R. W. et al. (2023) Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. Science Advances, 9(17), eadf9063. (doi: 10.1126/sciadv.adf9063) (PMID:37126544) (PMCID:PMC10132756)
Barry, S. T., Gabrilovich, D. I., Sansom, O. J. , Campbell, A. D. and Morton, J. P. (2023) Therapeutic targeting of tumour myeloid cells. Nature Reviews Cancer, 23(4), pp. 216-237. (doi: 10.1038/s41568-022-00546-2) (PMID:36747021)
Coetzee, A. S. et al. (2023) Nuclear FGFR1 promotes pancreatic stellate cell-driven invasion through up-regulation of Neuregulin 1. Oncogene, 42(7), pp. 419-500. (doi: 10.1038/s41388-022-02513-5) (PMID:36357571) (PMCID:PMC9918430)
Ali, A. et al. (2022) Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. American Journal of Cancer Research, 12(12), pp. 5668-5683. (PMID:36628279) (PMCID:PMC9827095)
Bellomo, G. et al. (2022) Chemotherapy-induced infiltration of neutrophils promotes pancreatic cancer metastasis via Gas6/AXL signalling axis. Gut, 71(11), pp. 2284-2299. (doi: 10.1136/gutjnl-2021-325272) (PMID:35022267) (PMCID:PMC9554050)
Ismail, N. F. B., Foth, M., Yousef, A. R. E., Cui, N., Leach, J. D.G., Jamieson, T., Karim, S. A., Salmond, J. M., Morton, J. P. and Iwata, T. (2022) Loss of Cxcr2 in myeloid cells promotes tumour progression and T cell infiltration in invasive bladder cancer. Bladder Cancer, 8(3), pp. 277-290. (doi: 10.3233/BLC-211645)
Vaziri-Gohar, A. et al. (2022) Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nature Cancer, 3(7), pp. 852-865. (doi: 10.1038/s43018-022-00393-y) (PMID:35681100) (PMCID:PMC9325670)
Kidger, A. M. et al. (2022) Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 41(20), pp. 2811-2823. (doi: 10.1038/s41388-022-02302-0) (PMID:35418690) (PMCID:PMC9106580)
Falcomata, C. et al. (2021) Genetic screens identify a context-specific PI3K/p27Kip1 node driving extrahepatic biliary cancer. Cancer Discovery, 11(12), pp. 3158-3177. (doi: 10.1158/2159-8290.CD-21-0209) (PMID:34282029) (PMCID:PMC7612573)
Murphy, K. J. et al. (2021) Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 7(40), eabh0363. (doi: 10.1126/sciadv.abh0363) (PMID:34586840) (PMCID:PMC8480933)
Nielsen, S. R. et al. (2021) Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nature Communications, 12, 3414. (doi: 10.1038/s41467-021-23731-7) (PMID:34099731) (PMCID:PMC8184753)
Nacke, M. et al. (2021) An ARF GTPase module promoting invasion and metastasis through regulating phosphoinositide metabolism. Nature Communications, 12, 1623. (doi: 10.1038/s41467-021-21847-4) (PMID:33712589) (PMCID:PMC7955138)
Race, A. M. et al. (2021) Deep learning-based annotation transfer between molecular imaging modalities: an automated workflow for multimodal data integration. Analytical Chemistry, 93(6), pp. 3061-3071. (doi: 10.1021/acs.analchem.0c02726) (PMID:33534548)
Latif, A.-L. et al. (2021) BRD4-mediated repression of p53 is a target for combination therapy in AML. Nature Communications, 12, 241. (doi: 10.1038/s41467-020-20378-8) (PMID:33431824) (PMCID:PMC7801601)
Dreyer, S. B. et al. (2021) Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology, 160(1), pp. 362-377. (doi: 10.1053/j.gastro.2020.09.043) (PMID:33039466) (PMCID:PMC8167930)
Morton, J. P. and Watt, D. M. (2021) Heterogeneity in the pancreatic cancer microenvironment – TGFβ as a master regulator? Cancers, 13(19), 4984. (doi: 10.3390/cancers13194984) (PMID:34638468) (PMCID:PMC8508541)
Ahmed, A. A. et al. (2020) Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models. ACS Medicinal Chemistry Letters, 11(8), pp. 1634-1644. (doi: 10.1021/acsmedchemlett.0c00317) (PMID:32832034) (PMCID:PMC7429975)
Muthalagu, N. et al. (2020) Repression of the type I interferon pathway underlies MYC & KRAS-dependent evasion of NK & B cells in pancreatic ductal adenocarcinoma. Cancer Discovery, 10(6), pp. 872-887. (doi: 10.1158/2159-8290.CD-19-0620) (PMID:32200350) (PMCID:PMC7611248)
Brunton, H. et al. (2020) HNF4A and GATA6 loss reveals therapeutically actionable subtypes in pancreatic cancer. Cell Reports, 31(6), 107625. (doi: 10.1016/j.celrep.2020.107625) (PMID:32402285)
Michalopoulou, E., Auciello, F. R., Bulusu, V., Strachan, D., Campbell, A. D., Tait-Mulder, J., Karim, S. A., Morton, J. P. , Sansom, O. J. and Kamphorst, J. J. (2020) Macropinocytosis renders a subset of pancreatic tumor cells resistant to mTOR inhibition. Cell Reports, 30(8), 2729-2742.e4. (doi: 10.1016/j.celrep.2020.01.080) (PMID:32101748) (PMCID:PMC7043007)
Blagih, J. et al. (2020) Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Reports, 30(2), 481-496.e6. (doi: 10.1016/j.celrep.2019.12.028) (PMID:31940491) (PMCID:31940491)
Dreyer, S.B., Jamieson, N.B. , Morton, J.P. , Sansom, O.J. , Biankin, A.V. and Chang, D.K. (2020) Pancreatic cancer: from genome discovery to PRECISION-Panc. Clinical Oncology, 32(1), pp. 5-8. (doi: 10.1016/j.clon.2019.08.007) (PMID:31522943)
Liko, D. et al. (2019) Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death and Differentiation, 26(12), pp. 2535-2550. (doi: 10.1038/s41418-019-0316-7) (PMID:30858608) (PMCID:PMC6861133)
Pereira, B. A., Vennin, C., Papanicolaou, M., Chambers, C. R., Herrmann, D., Morton, J. P. , Cox, T. R. and Timpson, P. (2019) CAF subpopulations: a new reservoir of stromal targets in pancreatic cancer. Trends in Cancer, 5(11), pp. 724-741. (doi: 10.1016/j.trecan.2019.09.010) (PMID:31735290)
Bott, A. J. et al. (2019) Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism. Cell Reports, 29(5), 1287-1298.e6. (doi: 10.1016/j.celrep.2019.09.056) (PMID:31665640) (PMCID:PMC6886125)
Vennin, C. et al. (2019) CAF hierarchy driven by pancreatic cancer cell p53-status creates a pro-metastatic and chemoresistant environment via perlecan. Nature Communications, 10, 3637. (doi: 10.1038/s41467-019-10968-6) (PMID:31406163) (PMCID:PMC6691013)
Reader, C. S. et al. (2019) The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 249(3), pp. 332-342. (doi: 10.1002/path.5320) (PMID:31259422) (PMCID:PMC6852434)
Hari, P. et al. (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Science Advances, 5(6), eaaw0254. (doi: 10.1126/sciadv.aaw0254) (PMID:31183403) (PMCID:PMC6551188)
Halbrook, C. J. et al. (2019) Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metabolism, 29(6), 1390-1399.e6. (doi: 10.1016/j.cmet.2019.02.001) (PMID:30827862) (PMCID:PMC6602533)
Leach, J., Morton, J. P. and Sansom, O. J. (2019) Neutrophils: homing in on the myeloid mechanisms of metastasis. Molecular Immunology, 110, pp. 69-76. (doi: 10.1016/j.molimm.2017.12.013) (PMID:29269005) (PMCID:PMC6544568)
Auciello, F. R. et al. (2019) A stromal lysolipid-autotaxin signaling axis promotes pancreatic tumor progression. Cancer Discovery, 9(5), pp. 617-627. (doi: 10.1158/2159-8290.CD-18-1212) (PMID:30837243) (PMCID:PMC6497553)
Conway, J. R.W., Herrmann, D., Evans, T.R. J. , Morton, J. P. and Timpson, P. (2019) Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine. Gut, 68(4), pp. 742-758. (doi: 10.1136/gutjnl-2018-316822) (PMID:30396902) (PMCID:PMC6580874)
Allen-Petersen, B. L. et al. (2019) Activation of PP2A and Inhibition of mTOR synergistically reduce MYC signaling and decrease tumor growth in pancreatic ductal adenocarcinoma. Cancer Research, 79(1), pp. 209-219. (doi: 10.1158/0008-5472.CAN-18-0717) (PMID:30389701) (PMCID:PMC6318036)
Chou, A. et al. (2018) Tailored first-line and second-line CDK4-targeting treatment combinations in mouse models of pancreatic cancer. Gut, 67(12), pp. 2142-2155. (doi: 10.1136/gutjnl-2017-315144) (PMID:29080858) (PMCID:PMC6241608)
Novo, D. et al. (2018) Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nature Communications, 9, 5069. (doi: 10.1038/s41467-018-07339-y) (PMID:30498210) (PMCID:PMC6265295)
Mackay, H. L. et al. (2018) Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nature Communications, 9, 3070. (doi: 10.1038/s41467-018-05368-1) (PMID:30076358) (PMCID:PMC6076230)
Warren, S. C. et al. (2018) Removing physiological motion from intravital and clinical functional imaging data. eLife, 7, e35800. (doi: 10.7554/elife.35800) (PMID:29985127) (PMCID:PMC6037484)
Conway, J. R.W. et al. (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Reports, 23(11), pp. 3312-3326. (doi: 10.1016/j.celrep.2018.05.038) (PMID:29898401) (PMCID:PMC6019737)
Godfrey, J. D., Morton, J. P. , Wilczynska, A., Sansom, O. J. and Bushell, M. D. (2018) MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death and Disease, 9(6), 644. (doi: 10.1038/s41419-018-0628-4) (PMID:29844410) (PMCID:PMC5973943)
Candido, J. B. et al. (2018) CSF1R+ macrophages sustain pancreatic tumor growth through T cell suppression and maintenance of key gene programs that define the squamous subtype. Cell Reports, 23(5), pp. 1448-1460. (doi: 10.1016/j.celrep.2018.03.131) (PMID:29719257) (PMCID:PMC5946718)
Meiser, J. et al. (2018) Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 9, 1368. (doi: 10.1038/s41467-018-03777-w) (PMID:29636461) (PMCID:PMC5893600)
Marchetti, C. et al. (2018) Targeting multiple effector pathways in pancreatic ductal adenocarcinoma with a G-quadruplex-binding small molecule. Journal of Medicinal Chemistry, 61(6), pp. 2500-2517. (doi: 10.1021/acs.jmedchem.7b01781) (PMID:29356532) (PMCID:PMC5867665)
Vennin, C., Murphy, K. J., Morton, J. P. , Cox, T. R., Pajic, M. and Timpson, P. (2018) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology, 154(4), pp. 820-838. (doi: 10.1053/j.gastro.2017.11.280) (PMID:29287624)
Schofield, H. K. et al. (2018) Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 3(2), e97422. (doi: 10.1172/jci.insight.97422) (PMID:29367463) (PMCID:PMC5821189)
Conway, J. R.W. et al. (2017) Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Scientific Reports, 7, 16887. (doi: 10.1038/s41598-017-17177-5) (PMID:29203823) (PMCID:PMC5715059)
Farrell, A. S. et al. (2017) MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nature Communications, 8, 1728. (doi: 10.1038/s41467-017-01967-6) (PMID:29170413) (PMCID:PMC5701042)
Nobis, M. et al. (2017) A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Reports, 21, pp. 274-288. (doi: 10.1016/j.celrep.2017.09.022) (PMID:28978480)
Chuvin, N. et al. (2017) Acinar-to-ductal metaplasia induced by transforming growth factor beta facilitates KRAS(G12D)-driven pancreatic tumorigenesis. Cellular and Molecular Gastroenterology and Hepatology, 4(2), pp. 263-282. (doi: 10.1016/j.jcmgh.2017.05.005) (PMID:28752115) (PMCID:PMC5524227)
Harris, N.L.E. et al. (2017) SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer. Oncogene, 36(30), pp. 4288-4298. (doi: 10.1038/onc.2017.63) (PMID:28346421) (PMCID:PMC5537606)
Rice, A.J., Cortes, E., Lachowski, D., Cheung, B.C.H., Karim, S.A., Morton, J.P. and Del Rio Hernandez, A. (2017) Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis, 6(7), e352. (doi: 10.1038/oncsis.2017.54) (PMID:28671675) (PMCID:PMC5541706)
Rosenfeldt, M. T., O'Prey, J., Flossbach, L., Nixon, C., Morton, J. P. , Sansom, O. J. and Ryan, K. M. (2017) PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death and Differentiation, 24(7), pp. 1303-1304. (doi: 10.1038/cdd.2016.120) (PMID:28106883)
Lachowski, D., Cortes, E., Pink, D., Chronopoulos, A., Karim, S. A., Morton, J. P. and del Río Hernández, A. E. (2017) Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Scientific Reports, 7, 2506. (doi: 10.1038/s41598-017-02689-x) (PMID:28566691) (PMCID:PMC5451433)
Vennin, C. et al. (2017) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Science Translational Medicine, 9(384), eaai8504. (doi: 10.1126/scitranslmed.aai8504) (PMID:28381539) (PMCID:PMC5777504)
Gundry, C. et al. (2017) Phosphorylation of Rab-coupling protein by LMTK3 controls Rab14-dependent EphA2 trafficking to promote cell:cell repulsion. Nature Communications, 8, 14646. (doi: 10.1038/ncomms14646) (PMID:28294115) (PMCID:PMC5355957)
Rath, N. et al. (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth. EMBO Molecular Medicine, 9(2), pp. 198-218. (doi: 10.15252/emmm.201606743) (PMID:28031255) (PMCID:PMC5286371)
Humphris, J. L. et al. (2017) Hypermutation in pancreatic cancer. Gastroenterology, 152(1), 68-74.e2. (doi: 10.1053/j.gastro.2016.09.060) (PMID:27856273)
Morton, J. P. and Sansom, O. J. (2017) CXCR2 inhibition in pancreatic cancer: opportunities for immunotherapy? Immunotherapy, 9(1), pp. 9-12. (doi: 10.2217/imt-2016-0115) (PMID:28000523)
Ritschka, B., Storer, M., Mas, A., Heinzmann, F., Ortells, M. C., Morton, J. P. , Sansom, O. J. , Zender, L. and Keyes, W. M. (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes and Development, 31(2), pp. 172-183. (doi: 10.1101/gad.290635.116) (PMID:28143833)
Driscoll, D. R. et al. (2016) mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Research, 76(23), pp. 6911-6923. (doi: 10.1158/0008-5472.CAN-16-0810) (PMID:27758884) (PMCID:PMC5135633)
Guest, R. V. et al. (2016) Notch3 drives development and progression of cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 113(43), pp. 12250-12255. (doi: 10.1073/pnas.1600067113) (PMID:27791012) (PMCID:PMC5086988)
Lesina, M. et al. (2016) RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. Journal of Clinical Investigation, 126(8), pp. 2919-2932. (doi: 10.1172/jci86477) (PMID:27454298)
Steele, C. W. et al. (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell, 29(6), pp. 832-845. (doi: 10.1016/j.ccell.2016.04.014) (PMID:27265504) (PMCID:PMC4912354)
Bailey, P. et al. (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 531(7592), pp. 47-52. (doi: 10.1038/nature16965) (PMID:26909576)
Matzke-Ogi, A. et al. (2016) Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology, 150(2), 513-525.e10. (doi: 10.1053/j.gastro.2015.10.020) (PMID:26597578)
Erami Rud Majani, Z. et al. (2016) Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue. Cell Reports, 14(1), pp. 152-167. (doi: 10.1016/j.celrep.2015.12.020) (PMID:26725115)
Gopinathan, A., Morton, J. P. , Jodrell, D. I. and Sansom, O. J. (2015) GEMMs as preclinical models for testing pancreatic cancer therapies. Disease Models and Mechanisms, 8(10), pp. 1185-1200. (doi: 10.1242/dmm.021055) (PMID:26438692) (PMCID:PMC4610236)
Steele, C. et al. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. Journal of Pathology, 237(1), pp. 85-97. (doi: 10.1002/path.4555) (PMID:25950520)
Dikovskaya, D. et al. (2015) Mitotic stress is an integral part of the oncogene-induced senescence program that promotes multinucleation and cell cycle arrest. Cell Reports, 12(9), pp. 1483-1496. (doi: 10.1016/j.celrep.2015.07.055) (PMID:26299965) (PMCID:PMC4562906)
Miller, B. W. et al. (2015) Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Molecular Medicine, 7, pp. 1063-1076. (doi: 10.15252/emmm.201404827) (PMID:26077591) (PMCID:PMC4551344)
Morran, D. C. et al. (2014) Targeting mTOR dependency in pancreatic cancer. Gut, 63(9), pp. 1481-1489. (doi: 10.1136/gutjnl-2013-306202) (PMID:24717934) (PMCID:PMC4145424)
Walz, S. et al. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature, 511(7510), pp. 483-487. (doi: 10.1038/nature13473) (PMID:25043018) (PMCID:PMC6879323)
Hamilton, G. et al. (2014) AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget, 5(15), pp. 6142-6167. (doi: 10.18632/oncotarget.2178) (PMID:25071014) (PMCID:PMC4171619)
Li, A. et al. (2014) Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology, 146(5), 1386-1396.e17. (doi: 10.1053/j.gastro.2014.01.046) (PMID:24462734) (PMCID:PMC4000441)
Johnsson, A.-K. E. et al. (2014) The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Reports, 6(6), pp. 1153-1164. (doi: 10.1016/j.celrep.2014.02.024)
Arjonen, A. et al. (2014) Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis. Journal of Clinical Investigation, 124(3), pp. 1069-1082. (doi: 10.1172/JCI67280) (PMID:24487586) (PMCID:PMC3934176)
Ali, A. et al. (2014) Expression of KOC, S100P, mesothelin and MUC1 in pancreatico-biliary adenocarcinomas: development and utility of a potential diagnostic immunohistochemistry panel. BMC Clinical Pathology, 14, p. 35. (doi: 10.1186/1472-6890-14-35)
Herrmann, D., Conway, J.R.W., Vennin, C., Magenau, A., Hughes, W.E., Morton, J.P. and Timpson, P. (2014) Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis, 35(8), pp. 1671-1679. (doi: 10.1093/carcin/bgu108)
Muthalagu, N., Junttila, M. R., Wiese, K. E., Wolf, E., Morton, J. , Bauer, B., Evan, G. I., Eilers, M. and Murphy, D. J. (2014) BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Reports, 8(5), pp. 1347-1353. (doi: 10.1016/j.celrep.2014.07.057)
Nobis, M., McGhee, E. J., Herrmann, D., Magenau, A., Morton, J. P., Anderson, K. I. and Timpson, P. (2014) Monitoring the dynamics of Src activity in response to anti-invasive dasatinib treatment at a subcellular level using dual intravital imaging. Cell Adhesion and Migration, 8(5), pp. 478-486. (doi: 10.4161/19336918.2014.970004)
Tan, E.H., Morton, J.P. , Timpson, P., Tucci, P., Melino, G., Flores, E.R., Sansom, O.J. , Vousden, K.H. and Muller, P.A.J. (2014) Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene, 33, pp. 3325-3333. (doi: 10.1038/onc.2013.287) (PMID:23873029) (PMCID:PMC4181588)
Nobis, M., Carragher, N.O., McGhee, E.J., Morton, J.P. , Sansom, O.J. , Anderson, K.I. and Timpson, P. (2013) Advanced intravital subcellular imaging reveals vital three-dimensional signalling events driving cancer cell behaviour and drug responses in live tissue. FEBS Journal, 280(21), pp. 5177-5197. (doi: 10.1111/febs.12348)
Denley, S.M., Jamieson, N.B. , McCall, P., Oien, K.C.S. , Morton, J.P. , Carter, C.R., Edwards, J. and McKay, C.J. (2013) Activation of the IL-6R/Jak/Stat pathway is associated with a poor outcome in resected pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Surgery, 17(5), pp. 887-898. (doi: 10.1007/s11605-013-2168-7)
Morton, J. and Sansom, O.J. (2013) MYC-y mice: From tumour initiation to therapeutic targeting of endogenous MYC. Molecular Oncology, 7(2), pp. 248-258. (doi: 10.1016/j.molonc.2013.02.015)
Steele, C.W., Jamieson, N.B. , Evans, T.R.J. , McKay, C.J., Sansom, O.J. , Morton, J. and Carter, C.R. (2013) Exploiting inflammation for therapeutic gain in pancreatic cancer. British Journal of Cancer, 108(5), pp. 997-1003. (doi: 10.1038/bjc.2013.24)
Muller, P.A.J. et al. (2013) Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 32(10), pp. 1252-1265. (doi: 10.1038/onc.2012.148)
Acosta, J.C. et al. (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 15, pp. 978-990. (doi: 10.1038/ncb2784)
Karim, S.A., Creedon, H., Patel, H., Carragher, N.O., Morton, J.P. , Muller, W.J., Evans, T.R.J. , Gusterson, B., Sansom, O.J. and Brunton, V.G. (2013) Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. Journal of Pathology, 230(4), pp. 430-440. (doi: 10.1002/path.4202)
Nobis, M. et al. (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Research, 73(15), pp. 4674-4686. (doi: 10.1158/0008-5472.CAN-12-4545)
Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479), pp. 296-300. (doi: 10.1038/nature12865)
Blyth, K. , Morton, J.P. and Sansom, O.J. (2012) The right time, the right place: will targeting human cancer-associated mutations to the mouse provide the perfect preclinical model? Current Opinion in Genetics and Development, 22(1), pp. 28-35. (doi: 10.1016/j.gde.2012.02.009)
Dozynkiewicz, M.A. et al. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Developmental Cell, 22(1), pp. 131-145. (doi: 10.1016/j.devcel.2011.11.008)
Jamieson, N. B. , Morran, D. C., Morton, J. P., Ali, A., Dickson, E. J., Carter, C. R., Sansom, O. J. , Evans, T. R. J. , McKay, C. J. and Oien, K. A. (2012) MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clinical Cancer Research, 18(2), pp. 534-545. (doi: 10.1158/1078-0432.CCR-11-0679)
Sandilands, E. et al. (2012) Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 14(1), pp. 51-60. (doi: 10.1038/ncb2386)
Kennedy, A.l. et al. (2011) Activation of the PIK3CA/AKT Pathway Suppresses Senescence Induced by an Activated RAS Oncogene to Promote Tumorigenesis. Molecular Cell, 42(1), pp. 36-49. (doi: 10.1016/j.molcel.2011.02.020)
Ahmad, I. et al. (2011) β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene, 30(2), pp. 178-189. (doi: 10.1038/onc.2010.399)
Kennedy, A. L., Adams, P. D. and Morton, J. P. (2011) Ras, PI3K/Akt and senescence: paradoxes provide clues for pancreatic cancer therapy. Small GTPases, 2(5), pp. 264-267. (doi: 10.4161/sgtp.2.5.17367) (PMID:22292129) (PMCID:PMC3265817)
Lindsay, C.C.R. et al. (2011) P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nature Communications, 2, pp. 1-9. (doi: 10.1038/ncomms1560)
McGhee, E. J., Morton, J. P. , Von Kriegsheim, A., Schwarz, J. P., Karim, S. A., Carragher, N. O., Sansom, O. , Anderson, K. I. and Timpson, P. (2011) FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion. Small GTPases, 2(4), pp. 239-244. (doi: 10.4161/sgtp.2.4.17275) (PMID:22145098) (PMCID:PMC3225915)
Morton, J.P., Myant, K.B. and Sansom, O.J. (2011) A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), pp. 173-175. (doi: 10.4161/cc.10.2.14350)
Morton, J.P. , Steele, C.W. and Sansom, O.J. (2011) Timing Is Everything: Brca2 and p53 Mutations in Pancreatic Cancer. Gastroenterology, 140(4), pp. 1143-1146. (doi: 10.1053/j.gastro.2011.02.026)
Timpson, P. et al. (2011) Spatial Regulation of RhoA Activity during Pancreatic Cancer Cell Invasion Driven by Mutant p53. Cancer Research, 71(3), pp. 747-757. (doi: 10.1158/0008-5472.CAN-10-2267)
Doyle, B., Morton, J. P. , Delaney, D. W., Ridgway, R. A., Wilkins, J. A. and Sansom, O. J. (2010) p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. Journal of Pathology, 222(2), pp. 129-137. (doi: 10.1002/path.2748) (PMID:20662002)
Morton, J.P. et al. (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(1), pp. 246-251. (doi: 10.1073/pnas.0908428107)
Ashton, G.H. et al. (2010) Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling. Developmental Cell, 19(2), pp. 259-269. (doi: 10.1016/j.devcel.2010.07.015)
Morton, J. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139(2), 586-597.e6. (doi: 10.1053/j.gastro.2010.04.055)
Morton, J.P. et al. (2010) Dasatinib Inhibits the Development of Metastases in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 139(1), pp. 292-303. (doi: 10.1053/j.gastro.2010.03.034)
Wellner, U. et al. (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11(12), 1487-U236. (doi: 10.1038/ncb1998) (PMID:19935649)
Morton, J. P. , Klimstra, D. S., Mongeau, M. E. and Lewis, B. C. (2008) Trp53 deletion stimulates the formation of metastatic pancreatic tumors. American Journal of Pathology, 172(4), pp. 1081-1087. (doi: 10.2353/ajpath.2008.070778) (PMID:18310506) (PMCID:PMC2276406)
Morton, J.P. , Kantidakis, T. and White, R.J. (2007) RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Research, 35(9), pp. 3046-3052. (doi: 10.1093/nar/gkm208)
Morton, J. P. , Mongeau, M. E., Klimstra, D. S., Morris, J. P., Lee, Y. C., Kawaguchi, Y., Wright, C. V.E., Hebrok, M. and Lewis, B. C. (2007) Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(12), pp. 5103-5108. (doi: 10.1073/pnas.0701158104) (PMID:17372229) (PMCID:PMC1828712)
Morton, J. P. and Lewis, B. C. (2007) Shh signaling and pancreatic cancer: implications for therapy? Cell Cycle, 6(13), pp. 1553-1557. (doi: 10.4161/cc.6.13.4467) (PMID:17611415)
Daly, N.L., Arvanitis, D.A., Fairley, J.A., Gomez-Roman, N. , Morton, J.P. , Graham, S.V., Spandidos, D.A. and White, R.J. (2005) Deregulation of RNA polymerase III transcription in cervical epithelium in response to high-risk human papillomavirus. Oncogene, 24, pp. 880-888. (doi: 10.1038/sj.onc.1208031)
Crighton, D., Woiwode, A., Zhang, C., Mandavia, N., Morton, J. P. , Warnock, L. J., Milner, J., White, R. J. and Johnson, D. L. (2003) p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO Journal, 22(11), pp. 2810-2820. (doi: 10.1093/emboj/cdg265) (PMID:12773395) (PMCID:PMC156762)
Johnston, I.M., Allison, S.J., Morton, J.P. , Schramm, L., Scott, P.H. and White, R.J. (2002) CK2 forms a stable complex with TFIII3 and activates RNA polymerase III transcription in human cells. Molecular and Cellular Biology, 22, pp. 3757-3768. (doi: 10.1128/MCB.22.11.3757-3768.2002)
Cameron, E.R. , Morton, J. , Johnston, C.J., Irvine, J., Bell, M., Onions, D.E., Neil, J.C. , Campbell, M. and Blyth, K. (2000) Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene. Cell Death and Differentiation, 7(1), pp. 80-88. (doi: 10.1038/sj.cdd.4400630) (PMID:10713723)
Grants
Grants and Awards listed are those received whilst working with the University of Glasgow.
- Multi-scale multi-modal characterisation of pre-malignant pancreatic lesions to define targets for early intervention
Pancreatic Cancer UK
2024 - 2027
- Identifying therapeutic opportunities for Bilary Cancers by investigating the role of Monocytes in drug response
AMMF - The Cholangiocarcinoma Charity
2024 - 2025
- Investigating Complex Crosstalk in the Pancreatic Cancer Microenvironment
Medical Research Council
2023 - 2028
- Investigating the pro-tumor functions of gamma delta T cells in hepatocellular carcinoma.
Worldwide Cancer Research
2022 - 2025
- Using complex state of the art mouse models of cancer to improve the understanding and treatment of human cancer
Medical Research Council
2022 - 2027
- CRUK Centre Renewal 2021
Cancer Research UK
2022 - 2023
- Investigating BH3 mimetics as radiosensitising agents in glioblastoma and pancreatic ductal adenocarcinoma
Cancer Research UK
2022 - 2022