Dr Katarzyna Modrzynska

  • Research Fellow (Parasitology)

Biography

Katarzyna graduated with the MSc in biotechnology from the Adam Mickiewicz University in Poland and obtained her PhD at the University of Edinburgh working on the genetic mechanisms of the resistance to two important antimalarial drugs: chloroquine and artemisinin.

Afterwards, fascinated the complexity of the Plasmodium life cycle she moved to the Wellcome Trust Sanger Institute where, as a postdoctoral fellow, she investigated the newly discovered family of apiAP2 transcription factors and their role in the parasite’s life cycle. Her work identified a number apiAP2’s essential at different points of the parasite’s development including the key regulator of gametocytogenesis – ap2-g. She joined the University of Glasgow in 2017 as a Sir Henry Dale Fellow.

Research interests

Understanding the mechanisms regulating gene expression the in malaria parasite:

Malaria continues to be a major global health issue taking each year a toll of over 200 mln infections and nearly 400 thousand deaths. Importantly, the emerging resistance threatens to significantly weaken the efficiency of the current first-line antimalarial drugs and a working vaccine remains elusive. New effective approaches targeting the disease are therefore urgently needed if the eradication is to be envisaged. This, in turn, requires a better understanding of the biology of its agent –mosquito transmitted parasites from Plasmodium species.

My lab investigates one of the key processes in the parasite’s cell – gene expression regulation. Plasmodium is characterised by a very complex life cycle involving multiple life forms in both mammalian host and mosquito vector. Each transition between the life stages requires a change in expression of a large number of parasite’s genes in a short amount of time. The molecular mechanisms regulating this process, however, remain poorly understood. We are characterising the known key molecules involved in gene expression regulation and attempting to identify the new ones, employing a variety approaches, including generation of transgenic parasites, comparative genomics and next-generation sequencing technologies. While we use a number of in vitro and in vivo models to instigate different parasite’s stages the current focus of the lab is the host to vector transition– the biggest bottleneck of parasite’s life cycle and theoretically a perfect target for transmission-blocking interventions. The ultimate aim of our work is to understand how parasite rewires its gene regulatory networks at during the host change and explore these findings for therapeutic purposes.

Publications

List by: Type | Date

Jump to: 2023 | 2021 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010
Number of items: 17.

2023

Abdi, A. I. et al. (2023) Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife, 12, e85140. (doi: 10.7554/eLife.85140) (PMID:36916164) (PMCID:PMC10059685)

Russell, A. J. C. et al. (2023) Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host and Microbe, 31(2), 305-319.e10. (doi: 10.1016/j.chom.2022.12.011) (PMID:36634679)

2021

Gissot, M., Pawlowic, M. C., Modrzynska, K. K. and Francia, M. E. (2021) Editorial: molecular basis of stage conversion in apicomplexan parasites. Frontiers in Cellular and Infection Microbiology, 11, 680184. (doi: 10.3389/fcimb.2021.680184) (PMID:33937107) (PMCID:PMC8085330)

2018

Kent, R. S., Modrzynska, K. K. , Cameron, R., Philip, N., Billker, O. and Waters, A. P. (2018) Inducible developmental reprogramming redefines commitment to sexual development by malaria parasites. Nature Microbiology, 3(11), pp. 1206-1213. (doi: 10.1038/s41564-018-0223-6) (PMID:30177743) (PMCID:PMC6317699)

Böhme, U. et al. (2018) Complete avian malaria parasite genomes reveal features associated with lineage specific evolution in birds and mammals. Genome Research, 28(4), pp. 547-560. (doi: 10.1101/gr.218123.116) (PMID:29500236) (PMCID:PMC5880244)

2017

Bushell, E. et al. (2017) Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell, 170(2), 260-272.e8. (doi: 10.1016/j.cell.2017.06.030) (PMID:28708996) (PMCID:PMC5509546)

Mancio-Silva, L. et al. (2017) Nutrient sensing modulates malaria parasite virulence. Nature, 547(7662), pp. 213-216. (doi: 10.1038/nature23009) (PMID:28678779) (PMCID:PMC5511512)

Modrzynska, K. et al. (2017) A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host and Microbe, 21(1), pp. 11-22. (doi: 10.1016/j.chom.2016.12.003) (PMID:28081440) (PMCID:PMC5241200)

2016

Yiangou, L., Montandon, R., Modrzynska, K. , Rosen, B., Bushell, W., Hale, C., Billker, O., Rayner, J. C. and Pance, A. (2016) A stem cell strategy identifies glycophorin C as a major erythrocyte receptor for the rodent malaria parasite Plasmodium berghei. PLoS ONE, 11(6), e0158238. (doi: 10.1371/journal.pone.0158238) (PMID:27362409) (PMCID:PMC4928779)

McInroy, G. R., Beraldi, D., Raiber, E.-A., Modrzynska, K. , van Delft, P., Billker, O. and Balasubramanian, S. (2016) Enhanced methylation analysis by recovery of unsequenceable fragments. PLoS ONE, 11(3), e0152322. (doi: 10.1371/journal.pone.0152322) (PMID:27031619) (PMCID:PMC4816320)

2015

Gomes, A. R. et al. (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host and Microbe, 17(3), pp. 404-413. (doi: 10.1016/j.chom.2015.01.014) (PMID:25732065) (PMCID:PMC4362957)

2014

Sinha, A. et al. (2014) A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature, 507(7491), pp. 253-257. (doi: 10.1038/nature12970) (PMID:24572359) (PMCID:PMC4105895)

Oppenheim, R. D. et al. (2014) BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 10(7), e1004263. (doi: 10.1371/journal.ppat.1004263) (PMID:25032958) (PMCID:PMC4102578)

2013

Henriques, G. et al. (2013) Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malaria Journal, 12, 118. (doi: 10.1186/1475-2875-12-118) (PMID:23561245) (PMCID:PMC3655824)

2012

Modrzynska, K. K. et al. (2012) Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria. BMC Genomics, 13, 106. (doi: 10.1186/1471-2164-13-106) (PMID:22435897) (PMCID:PMC3362770)

2011

Borges, S., Cravo, P., Creasey, A., Fawcett, R., Modrzynska, K. , Rodrigues, L., Martinelli, A. and Hunt, P. (2011) Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites. Antimicrobial Agents and Chemotherapy, 55(10), pp. 4858-4865. (doi: 10.1128/AAC.01748-10) (PMID:21709099) (PMCID:PMC3186966)

2010

Hunt, P. et al. (2010) Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics, 11, 499. (doi: 10.1186/1471-2164-11-499) (PMID:20846421) (PMCID:PMC2996995)

This list was generated on Wed Nov 20 19:41:11 2024 GMT.
Jump to: Articles
Number of items: 17.

Articles

Abdi, A. I. et al. (2023) Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife, 12, e85140. (doi: 10.7554/eLife.85140) (PMID:36916164) (PMCID:PMC10059685)

Russell, A. J. C. et al. (2023) Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host and Microbe, 31(2), 305-319.e10. (doi: 10.1016/j.chom.2022.12.011) (PMID:36634679)

Gissot, M., Pawlowic, M. C., Modrzynska, K. K. and Francia, M. E. (2021) Editorial: molecular basis of stage conversion in apicomplexan parasites. Frontiers in Cellular and Infection Microbiology, 11, 680184. (doi: 10.3389/fcimb.2021.680184) (PMID:33937107) (PMCID:PMC8085330)

Kent, R. S., Modrzynska, K. K. , Cameron, R., Philip, N., Billker, O. and Waters, A. P. (2018) Inducible developmental reprogramming redefines commitment to sexual development by malaria parasites. Nature Microbiology, 3(11), pp. 1206-1213. (doi: 10.1038/s41564-018-0223-6) (PMID:30177743) (PMCID:PMC6317699)

Böhme, U. et al. (2018) Complete avian malaria parasite genomes reveal features associated with lineage specific evolution in birds and mammals. Genome Research, 28(4), pp. 547-560. (doi: 10.1101/gr.218123.116) (PMID:29500236) (PMCID:PMC5880244)

Bushell, E. et al. (2017) Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell, 170(2), 260-272.e8. (doi: 10.1016/j.cell.2017.06.030) (PMID:28708996) (PMCID:PMC5509546)

Mancio-Silva, L. et al. (2017) Nutrient sensing modulates malaria parasite virulence. Nature, 547(7662), pp. 213-216. (doi: 10.1038/nature23009) (PMID:28678779) (PMCID:PMC5511512)

Modrzynska, K. et al. (2017) A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host and Microbe, 21(1), pp. 11-22. (doi: 10.1016/j.chom.2016.12.003) (PMID:28081440) (PMCID:PMC5241200)

Yiangou, L., Montandon, R., Modrzynska, K. , Rosen, B., Bushell, W., Hale, C., Billker, O., Rayner, J. C. and Pance, A. (2016) A stem cell strategy identifies glycophorin C as a major erythrocyte receptor for the rodent malaria parasite Plasmodium berghei. PLoS ONE, 11(6), e0158238. (doi: 10.1371/journal.pone.0158238) (PMID:27362409) (PMCID:PMC4928779)

McInroy, G. R., Beraldi, D., Raiber, E.-A., Modrzynska, K. , van Delft, P., Billker, O. and Balasubramanian, S. (2016) Enhanced methylation analysis by recovery of unsequenceable fragments. PLoS ONE, 11(3), e0152322. (doi: 10.1371/journal.pone.0152322) (PMID:27031619) (PMCID:PMC4816320)

Gomes, A. R. et al. (2015) A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell Host and Microbe, 17(3), pp. 404-413. (doi: 10.1016/j.chom.2015.01.014) (PMID:25732065) (PMCID:PMC4362957)

Sinha, A. et al. (2014) A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature, 507(7491), pp. 253-257. (doi: 10.1038/nature12970) (PMID:24572359) (PMCID:PMC4105895)

Oppenheim, R. D. et al. (2014) BCKDH: the missing link in apicomplexan mitochondrial metabolism is required for full virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 10(7), e1004263. (doi: 10.1371/journal.ppat.1004263) (PMID:25032958) (PMCID:PMC4102578)

Henriques, G. et al. (2013) Artemisinin resistance in rodent malaria - mutation in the AP2 adaptor μ-chain suggests involvement of endocytosis and membrane protein trafficking. Malaria Journal, 12, 118. (doi: 10.1186/1475-2875-12-118) (PMID:23561245) (PMCID:PMC3655824)

Modrzynska, K. K. et al. (2012) Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria. BMC Genomics, 13, 106. (doi: 10.1186/1471-2164-13-106) (PMID:22435897) (PMCID:PMC3362770)

Borges, S., Cravo, P., Creasey, A., Fawcett, R., Modrzynska, K. , Rodrigues, L., Martinelli, A. and Hunt, P. (2011) Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites. Antimicrobial Agents and Chemotherapy, 55(10), pp. 4858-4865. (doi: 10.1128/AAC.01748-10) (PMID:21709099) (PMCID:PMC3186966)

Hunt, P. et al. (2010) Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics, 11, 499. (doi: 10.1186/1471-2164-11-499) (PMID:20846421) (PMCID:PMC2996995)

This list was generated on Wed Nov 20 19:41:11 2024 GMT.

Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Gene expression regulation during the early ookinete development - maternal and paternal alleles differentiation
    Wellcome Trust
    2022 - 2025
     
  • Characterisation of the new family of zinc finger proteins and their role in apicomplexan parasites development and transmission.
    Biotechnology and Biological Sciences Research Council
    2020 - 2023
     
  • Dissecting the transcription regulatory network in malaria parasites at early transmission stages
    Wellcome Trust
    2017 - 2023
     

Supervision