Dr Adam Dobson

  • Senior Research Fellow (Molecular Biosciences)

Biography

Adam did his PhD on evolution of insect infection in Sheffield. His first postdoc, at Cornell University, was focussed on how bacteria living in the gut benefit host health. All signs pointed towards the molecular networks that signal nutrient availability, which led to a second postdoc at UCL to study those networks directly, and their impact on lifelong health and ageing. This work showed the importance of the interaction between nutrients and specific tissues: a theme that was developed further in a fellowship at the Technical University of Dresden. 

Several transcriptomes and a few million flies later, Adam joined MCSB to look for evolutionarily-conserved ways that bacteria communicate with their hosts, and the consequences for long-term host health. Biomedically, this could help us to design microbiota to improve long-term health. Biologically, this research could reveal general rules of what bacteria can do for their hosts, which animals seem unable to manage alone.

Website: The Dobson Lab

Research interests

Nutrition affects all aspects of animal form and function, including development, adult health, and the biology of ageing. Consequently, both gut microbes and diet are important factors for lifelong health. Nutrient availability is unlikely to exactly match the consumer's needs, which vary genetically, by life stage, and also amongst distinct tissues. This mismatch of supply and demand means that animals have to "choose" how to use nutrients, and certain processes will be prioritised over others. This prioritisation results in biological tradeoffs, which underlie epidemics of human ill-health, including metabolic disease and diseases of ageing.

I am interested in the function and evolution of nutrient signalling and metabolism. The ultimate goal is to promote health throughout the lifecourse by optimising microbiota and diet for individuals' needs. I primarily address these questions using the fruitfly, Drosophila melanogaster, to identify evolutionarily-conserved processes that could be targeted in other animals, including humans.

Research groups

Publications

List by: Type | Date

Jump to: 2025 | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012
Number of items: 28.

2025

Llanwarne, F. and Dobson, A. (2025) Covariation between microbiome composition and host transcriptome in the gut of wild Drosophila melanogaster: a re-analysis. Ecology and Evolution, 15(1), e70853. (doi: 10.1002/ece3.70853) (PMID:39803189) (PMCID:PMC11725384)

2024

Ibrahim, R., Dobson, A. and Bahilo Martinez, M. (2024) Rapamycin’s lifespan effect is modulated by mito-nuclear epistasis in Drosophila. Aging Cell, (doi: 10.1111/acel.14328) (PMID:39225061) (Early Online Publication)

2023

Gould, E. et al. (2023) Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology. EcoEvoRxiv, (doi: 10.32942/X2GG62)

Sannino, D. R. and Dobson, A. J. (2023) Acetobacter pomorum in the Drosophila gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast. Applied and Environmental Microbiology, 89(10), e0016523. (doi: 10.1128/aem.00165-23) (PMID:37800920) (PMCID:PMC10617557)

Dobson, A. , Voigt, S., Kumpitsch, L., Langer, L., Voigt, E., Ibrahim, R., Dowling, D. and Reinhardt, K. (2023) Mitonuclear interactions shape both direct and parental effects of diet on fitness, and involve a SNP in mitoribosomal 16s rRNA. PLoS Biology, 21(8), e3002218. (doi: 10.1371/journal.pbio.3002218) (PMID:37603597) (PMCID:PMC10441796)

2022

Martínez Corrales, G., Li, M., Svermova, T., Goncalves, A., Voicu, D., Dobson, A. J. , Southall, T. D. and Alic, N. (2022) Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodelling and Xbp1. Nature Aging, 2(12), pp. 1176-1190. (doi: 10.1038/s43587-022-00312-x) (PMID:37118537)

2021

Bonfini, A., Dobson, A. J. , Duneau, D., Revah, J., Liu, X., Houtz, P. and Buchon, N. (2021) Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife, 10, e64125. (doi: 10.7554/elife.64125) (PMID:34553686) (PMCID:PMC8528489)

2020

Woodling, N. S. et al. (2020) The neuronal receptor tyrosine kinase Alk is a target for longevity. Aging Cell, 19(5), e13137. (doi: 10.1111/acel.13137) (PMID:32291952) (PMCID:PMC7253064)

2019

Dobson, A. J. et al. (2019) Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genetics, 15(7), e1008212. (doi: 10.1371/journal.pgen.1008212) (PMID:31356597) (PMCID:PMC6662994)

2018

Dobson, A. J. , He, X., Blanc, E., Bolukbasi, E., Feseha, Y., Yang, M. and Piper, M. D.W. (2018) Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction. npj Aging and Mechanisms of Disease, 4, 5. (doi: 10.1038/s41514-018-0024-4) (PMID:29675265) (PMCID:PMC5904217)

Sannino, D. R., Dobson, A. J. , Edwards, K., Angert, E. R. and Buchon, N. (2018) The Drosophila melanogaster gut microbiota provisions thiamine to its host. mBio, 9(2), e00155-18. (doi: 10.1128/mBio.00155-18) (PMID:29511074) (PMCID:PMC5845000)

2017

Filer, D., Thompson, M. A., Takhaveev, V., Dobson, A. J. , Kotronaki, I., Green, J. W.M., Heinemann, M., Tullet, J. M.A. and Alic, N. (2017) RNA polymerase III limits longevity downstream of TORC1. Nature, 552(7684), pp. 263-267. (doi: 10.1038/nature25007) (PMID:29186112) (PMCID:PMC5732570)

Dobson, A. J. , Chaston, J. M. and Douglas, A. E. (2017) Erratum to: The Drosophila transcriptional network is structured by microbiota. BMC Genomics, 18, 124. (doi: 10.1186/s12864-017-3508-x) (PMID:28148229) (PMCID:PMC5286824)

Dobson, A. J. , Ezcurra, M., Flanagan, C. E., Summerfield, A. C., Piper, M. D.W., Gems, D. and Alic, N. (2017) Nutritional programming of lifespan by FOXO inhibition on sugar-rich diets. Cell Reports, 18(2), pp. 299-306. (doi: 10.1016/j.celrep.2016.12.029) (PMID:28076775) (PMCID:PMC5263231)

2016

Dobson, A. J. , Chaston, J. M. and Douglas, A. E. (2016) The Drosophila transcriptional network is structured by microbiota. BMC Genomics, 17, 975. (doi: 10.1186/s12864-016-3307-9) (PMID:27887564) (PMCID:PMC5124311)

Johnston, P. R., Dobson, A. J. and Rolff, J. (2016) Genomic signatures of experimental adaptation to antimicrobial peptides in Staphylococcus aureus. G3: Genes, Genomes, Genetics, 6(6), pp. 1535-1539. (doi: 10.1534/g3.115.023622) (PMID:27172179) (PMCID:PMC4889650)

Makarova, O., Rodriguez-Rojas, A., Eravci, M., Weise, C., Dobson, A. , Johnston, P. and Rolff, J. (2016) Antimicrobial defence and persistent infection in insects revisited. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1695), 20150296. (doi: 10.1098/rstb.2015.0296) (PMID:27160598) (PMCID:PMC4874393)

Regan, J. C., Khericha, M., Dobson, A. J. , Bolukbasi, E., Rattanavirotkul, N. and Partridge, L. (2016) Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife, 5, e10956. (doi: 10.7554/eLife.10956) (PMID:26878754) (PMCID:PMC4805549)

Chaston, J. M., Dobson, A. J. , Newell, P. D. and Douglas, A. E. (2016) Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Applied and Environmental Microbiology, 82(2), pp. 671-679. (doi: 10.1128/AEM.03301-15) (PMID:26567306) (PMCID:PMC4711117)

2015

Dutta, D., Dobson, A. J. , Houtz, P. L., Gläßer, C., Revah, J., Korzelius, J., Patel, P. H., Edgar, B. A. and Buchon, N. (2015) Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Cell Reports, 12(2), pp. 346-358. (doi: 10.1016/j.celrep.2015.06.009) (PMID:26146076)

Dobson, A. J. et al. (2015) Corrigendum: Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 6, 7296. (doi: 10.1038/ncomms8296) (PMID:25976209)

Dobson, A. J. et al. (2015) Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 6, 6312. (doi: 10.1038/ncomms7312) (PMID:25692519) (PMCID:PMC4333721)

2014

Newell, P. D., Chaston, J. M., Wang, Y., Winans, N. J., Sannino, D. R., Wong, A. C.N., Dobson, A. J. , Kagle, J. and Douglas, A. E. (2014) In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Frontiers in Microbiology, 5, 576. (doi: 10.3389/fmicb.2014.00576) (PMID:25408687) (PMCID:PMC4219406)

Dobson, A. J. , Purves, J. and Rolff, J. (2014) Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. Evolutionary Applications, 7(8), pp. 905-912. (doi: 10.1111/eva.12184) (PMID:25469169) (PMCID:PMC4211720)

Wong, A. C.-N., Dobson, A. J. and Douglas, A. E. (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. Journal of Experimental Biology, 217(11), pp. 1894-1901. (doi: 10.1242/jeb.101725) (PMID:24577449) (PMCID:PMC4037322)

2013

Dobson, A. J. , Purves, J., Kamysz, W. and Rolff, J. (2013) Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS ONE, 8(10), e76521. (doi: 10.1371/journal.pone.0076521) (PMID:24204634) (PMCID:PMC3799789)

Douglas, A. E. and Dobson, A. J. (2013) New synthesis: animal communication mediated by microbes: fact or fantasy? Journal of Chemical Ecology, 39(9), p. 1149. (doi: 10.1007/s10886-013-0343-7) (PMID:24052435) (PMCID:PMC3833862)

2012

Dobson, A. J. , Johnston, P. R., Vilcinskas, A. and Rolff, J. (2012) Identification of immunological expressed sequence tags in the mealworm beetle Tenebrio molitor. Journal of Insect Physiology, 58(12), pp. 1556-1561. (doi: 10.1016/j.jinsphys.2012.09.009) (PMID:23041376)

This list was generated on Mon Jan 20 05:08:05 2025 GMT.
Jump to: Articles
Number of items: 28.

Articles

Llanwarne, F. and Dobson, A. (2025) Covariation between microbiome composition and host transcriptome in the gut of wild Drosophila melanogaster: a re-analysis. Ecology and Evolution, 15(1), e70853. (doi: 10.1002/ece3.70853) (PMID:39803189) (PMCID:PMC11725384)

Ibrahim, R., Dobson, A. and Bahilo Martinez, M. (2024) Rapamycin’s lifespan effect is modulated by mito-nuclear epistasis in Drosophila. Aging Cell, (doi: 10.1111/acel.14328) (PMID:39225061) (Early Online Publication)

Gould, E. et al. (2023) Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology. EcoEvoRxiv, (doi: 10.32942/X2GG62)

Sannino, D. R. and Dobson, A. J. (2023) Acetobacter pomorum in the Drosophila gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast. Applied and Environmental Microbiology, 89(10), e0016523. (doi: 10.1128/aem.00165-23) (PMID:37800920) (PMCID:PMC10617557)

Dobson, A. , Voigt, S., Kumpitsch, L., Langer, L., Voigt, E., Ibrahim, R., Dowling, D. and Reinhardt, K. (2023) Mitonuclear interactions shape both direct and parental effects of diet on fitness, and involve a SNP in mitoribosomal 16s rRNA. PLoS Biology, 21(8), e3002218. (doi: 10.1371/journal.pbio.3002218) (PMID:37603597) (PMCID:PMC10441796)

Martínez Corrales, G., Li, M., Svermova, T., Goncalves, A., Voicu, D., Dobson, A. J. , Southall, T. D. and Alic, N. (2022) Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodelling and Xbp1. Nature Aging, 2(12), pp. 1176-1190. (doi: 10.1038/s43587-022-00312-x) (PMID:37118537)

Bonfini, A., Dobson, A. J. , Duneau, D., Revah, J., Liu, X., Houtz, P. and Buchon, N. (2021) Multiscale analysis reveals that diet-dependent midgut plasticity emerges from alterations in both stem cell niche coupling and enterocyte size. eLife, 10, e64125. (doi: 10.7554/elife.64125) (PMID:34553686) (PMCID:PMC8528489)

Woodling, N. S. et al. (2020) The neuronal receptor tyrosine kinase Alk is a target for longevity. Aging Cell, 19(5), e13137. (doi: 10.1111/acel.13137) (PMID:32291952) (PMCID:PMC7253064)

Dobson, A. J. et al. (2019) Longevity is determined by ETS transcription factors in multiple tissues and diverse species. PLoS Genetics, 15(7), e1008212. (doi: 10.1371/journal.pgen.1008212) (PMID:31356597) (PMCID:PMC6662994)

Dobson, A. J. , He, X., Blanc, E., Bolukbasi, E., Feseha, Y., Yang, M. and Piper, M. D.W. (2018) Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in longevity by dietary restriction. npj Aging and Mechanisms of Disease, 4, 5. (doi: 10.1038/s41514-018-0024-4) (PMID:29675265) (PMCID:PMC5904217)

Sannino, D. R., Dobson, A. J. , Edwards, K., Angert, E. R. and Buchon, N. (2018) The Drosophila melanogaster gut microbiota provisions thiamine to its host. mBio, 9(2), e00155-18. (doi: 10.1128/mBio.00155-18) (PMID:29511074) (PMCID:PMC5845000)

Filer, D., Thompson, M. A., Takhaveev, V., Dobson, A. J. , Kotronaki, I., Green, J. W.M., Heinemann, M., Tullet, J. M.A. and Alic, N. (2017) RNA polymerase III limits longevity downstream of TORC1. Nature, 552(7684), pp. 263-267. (doi: 10.1038/nature25007) (PMID:29186112) (PMCID:PMC5732570)

Dobson, A. J. , Chaston, J. M. and Douglas, A. E. (2017) Erratum to: The Drosophila transcriptional network is structured by microbiota. BMC Genomics, 18, 124. (doi: 10.1186/s12864-017-3508-x) (PMID:28148229) (PMCID:PMC5286824)

Dobson, A. J. , Ezcurra, M., Flanagan, C. E., Summerfield, A. C., Piper, M. D.W., Gems, D. and Alic, N. (2017) Nutritional programming of lifespan by FOXO inhibition on sugar-rich diets. Cell Reports, 18(2), pp. 299-306. (doi: 10.1016/j.celrep.2016.12.029) (PMID:28076775) (PMCID:PMC5263231)

Dobson, A. J. , Chaston, J. M. and Douglas, A. E. (2016) The Drosophila transcriptional network is structured by microbiota. BMC Genomics, 17, 975. (doi: 10.1186/s12864-016-3307-9) (PMID:27887564) (PMCID:PMC5124311)

Johnston, P. R., Dobson, A. J. and Rolff, J. (2016) Genomic signatures of experimental adaptation to antimicrobial peptides in Staphylococcus aureus. G3: Genes, Genomes, Genetics, 6(6), pp. 1535-1539. (doi: 10.1534/g3.115.023622) (PMID:27172179) (PMCID:PMC4889650)

Makarova, O., Rodriguez-Rojas, A., Eravci, M., Weise, C., Dobson, A. , Johnston, P. and Rolff, J. (2016) Antimicrobial defence and persistent infection in insects revisited. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1695), 20150296. (doi: 10.1098/rstb.2015.0296) (PMID:27160598) (PMCID:PMC4874393)

Regan, J. C., Khericha, M., Dobson, A. J. , Bolukbasi, E., Rattanavirotkul, N. and Partridge, L. (2016) Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife, 5, e10956. (doi: 10.7554/eLife.10956) (PMID:26878754) (PMCID:PMC4805549)

Chaston, J. M., Dobson, A. J. , Newell, P. D. and Douglas, A. E. (2016) Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Applied and Environmental Microbiology, 82(2), pp. 671-679. (doi: 10.1128/AEM.03301-15) (PMID:26567306) (PMCID:PMC4711117)

Dutta, D., Dobson, A. J. , Houtz, P. L., Gläßer, C., Revah, J., Korzelius, J., Patel, P. H., Edgar, B. A. and Buchon, N. (2015) Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult Drosophila midgut. Cell Reports, 12(2), pp. 346-358. (doi: 10.1016/j.celrep.2015.06.009) (PMID:26146076)

Dobson, A. J. et al. (2015) Corrigendum: Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 6, 7296. (doi: 10.1038/ncomms8296) (PMID:25976209)

Dobson, A. J. et al. (2015) Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nature Communications, 6, 6312. (doi: 10.1038/ncomms7312) (PMID:25692519) (PMCID:PMC4333721)

Newell, P. D., Chaston, J. M., Wang, Y., Winans, N. J., Sannino, D. R., Wong, A. C.N., Dobson, A. J. , Kagle, J. and Douglas, A. E. (2014) In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Frontiers in Microbiology, 5, 576. (doi: 10.3389/fmicb.2014.00576) (PMID:25408687) (PMCID:PMC4219406)

Dobson, A. J. , Purves, J. and Rolff, J. (2014) Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. Evolutionary Applications, 7(8), pp. 905-912. (doi: 10.1111/eva.12184) (PMID:25469169) (PMCID:PMC4211720)

Wong, A. C.-N., Dobson, A. J. and Douglas, A. E. (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. Journal of Experimental Biology, 217(11), pp. 1894-1901. (doi: 10.1242/jeb.101725) (PMID:24577449) (PMCID:PMC4037322)

Dobson, A. J. , Purves, J., Kamysz, W. and Rolff, J. (2013) Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS ONE, 8(10), e76521. (doi: 10.1371/journal.pone.0076521) (PMID:24204634) (PMCID:PMC3799789)

Douglas, A. E. and Dobson, A. J. (2013) New synthesis: animal communication mediated by microbes: fact or fantasy? Journal of Chemical Ecology, 39(9), p. 1149. (doi: 10.1007/s10886-013-0343-7) (PMID:24052435) (PMCID:PMC3833862)

Dobson, A. J. , Johnston, P. R., Vilcinskas, A. and Rolff, J. (2012) Identification of immunological expressed sequence tags in the mealworm beetle Tenebrio molitor. Journal of Insect Physiology, 58(12), pp. 1556-1561. (doi: 10.1016/j.jinsphys.2012.09.009) (PMID:23041376)

This list was generated on Mon Jan 20 05:08:05 2025 GMT.

Grants

Grants and Awards listed are those received whilst working with the University of Glasgow.

  • Remote control: how do microbiota promote lifelong health? Pt2.
    Medical Research Council
    2024 - 2027
     
  • MVLS-Copenhagen training partnership: neuroendocrinology and nutrition.
    Biotechnology and Biological Sciences Research Council
    2022 - 2023
     
  • Remote control: How do microbiota promote animal health?
    Medical Research Council
    2019 - 2023