Quantum Technology MSc
Quantum Information PHYS5039
- Academic Session: 2024-25
- School: School of Physics and Astronomy
- Credits: 10
- Level: Level 5 (SCQF level 11)
- Typically Offered: Semester 2
- Available to Visiting Students: Yes
- Collaborative Online International Learning: No
Short Description
Quantum information science is an interdisciplinary field of research concerned with the encoding, manipulation, and read-out of information in the state of a quantum system. This course will introduce the field, including aspects of classical information theory; the physics of measurement and evolution of finite-dimensional quantum systems; entanglement; and elements of quantum computation.
Timetable
Typically 2 lectures per week.
Excluded Courses
None
Co-requisites
None
Assessment
Assessment: The course will be assessed via continuous assessment in the form of set exercises (20%), and an unseen examination (80%).
Reassessment: Reassessment of the main diet examination is normally available for students on PGT degree programmes if they do not achieve an overall course grade of C3 at their first attempt. Reassessment of the main diet examination is not normally available for students on Honours degree programmes.
.
Main Assessment In: April/May
Course Aims
The aims of this course are:
To introduce quantum information theory, including the necessary background in classical information theory, and the physics of finite-dimensional quantum systems.
To describe how to encode, manipulate and read-out information in a quantum system, and to discuss the relationship between physics and information processing.
To introduce quantum protocols such as teleportation, quantum key distribution, the principles of quantum computation, quantum communication, and some examples of quantum algorithms.
Intended Learning Outcomes of Course
By the end of this course students will be able to:
· Explain the difference between a bit, the classical carrier of information, and a qubit, the quantum carrier of information.
· Give examples of generalized quantum measurements and evaluate the probabilities of measurement outcomes.
· Determine the evolution of a pure or a mixed quantum state under a given quantum operation.
· Determine whether a composite state is entangled and understand some of the applications of entanglement.
· Analyse simple quantum circuits.
· Critically assess the fidelity and functionality of key quantum resource states, such as entangled states, in quantum computing and communication.
· Understand and explain important examples of quantum protocols including dense coding, teleportation, quantum key distribution, Grover's algorithm, and Shor's algorithm.
Minimum Requirement for Award of Credits
Students must submit at least 75% by weight of the components (including examinations) of the course's summative assessment.