Postgraduate research 

Molecular Pharmacology PhD/iPhD/MSc (Research)

abstract genetic strings

Around a third of all currently approved drugs target G protein-coupled receptors (GPCRs), making these receptors the most successful drug target in history. Our research is focused on the structure and function of GPCRs and understanding the signalling pathways that are important for different physiological and pathophysiological responses.

  • PhD: 3-4 years full-time; 5 years part-time;
  • MSc (Research): 1 year full-time; 2 years part-time;
  • IPhD: 5 years full-time;

Research projects

Self-funded projects

+++

Regulation of AMP-activated protein kinase by steroids

Supervisor: Ian Salt

Project background: AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade activated by low energy levels [1]. AMPK phosphorylates targets leading to suppression of ATP-consuming pathways and stimulation of ATP producing pathways, such that the AMP:ATP ratio returns to normal [1]. Reduced levels of nutrients can therefore activate AMPK if they cause ATP levels to fall. Similarly, overnutrition may suppress AMPK activity. As a consequence, activation of AMPK has been proposed as a potential therapy for metabolic disorders including obesity and type 2 diabetes. Recent studies have indicated that the steroid glucocorticoid hormones, that regulate metabolism and are anti-inflammatory, can activate AMPK in macrophages [2]. Furthermore, the glucocorticoid dexamethasone has been reported to activate AMPK in muscle, liver and hypothalamus [3,4], yet inhibit AMPK in adipocytes [3]. AMPK also has anti-inflammatory actions [5].

This project will examine whether glucocorticoids and other steroid hormones regulate AMPK and whether AMPK conversely influences steroid signalling. Furthermore, the functional consequences of any such regulation will be investigated.

Techniques: The project will provide excellent training in a range of techniques associated with molecular biology, cell biology and biochemistry. These include but are not limited to mammalian cell culture, gel electrophoresis and immunoblotting, fluorescence microscopy, nutrient flux and signalling assays.

References

  1. Salt IP, Hardie DG (2017) AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System. Circ Res. 120:1825-41.
  2. Caratti et al (2023) Macrophagic AMPKα1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep. 24;e55363
  3. Christ-Crain et al (2008) AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J. 22;1672–83
  4. Liu et al (2016) Mitochondrial Dysfunction Launches Dexamethasone-Induced Skeletal Muscle Atrophy via AMPK/FOXO3 Signaling. Mol Pharmaceutics 13;73-84
  5. Mancini et al (2017) Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 440:44-56.

---

Overview

Our PhD programmes offer training in all aspects of molecular pharmacology and our large internationally recognised research group have significant expertise in pharmacological analyses, cell signalling, drug discovery and use of a extensive range of transgenic and disease mouse models to define the physiological functions and therapeutic potential of specific G protein-coupled receptors (GPCR) subtypes.

GPCRs are the largest family of cell surface receptors and are involved in the regulation of nearly every mammalian cellular response. Around a third of all currently approved drugs target GPCRs, making these receptors the most successful drug target in history.

Our research is focused on the structure and function of GPCRs and understanding the signalling pathways that are important for different physiological and pathophysiological responses. We employ wide-ranging and multi-disciplinary approaches to take a ‘molecule to behaviour’ approach to understand, validate and then translate therapeutic opportunities by targeting trans-plasma membrane and intracellular signalling pathways. We identify unique small molecule ligands that modulate cellular signalling cascades and exploit these to define both underpinning biology and their effects on disease progression and remission.

We have driven understanding and therapeutic validation of previously poorly understood and ‘hard to target’ G protein-coupled receptors that are activated by metabolic intermediates, particularly fatty acids of varying chain length. We are established as ‘world-leading’ in areas at the interface so created between metabolism and immunity. This has resulted in ‘spin out’ in 2015 of the company Caldan Therapeutics, which garnered £4.5 million in Series A funding, and in Milligan being a finalist in the 2016 BBSRC ‘Innovator of the Year’ competition. Moreover, our expertise in this area has resulted in the establishment of new links to companies including Heptares Therapeutics and Galapagos NV, as well as consolidating links to the pharmaceutical giant AstraZeneca, resulting in enhanced funding and joint publications.

By linking small molecule ligands, the new wealth of information on structural characteristics of G protein-coupled receptors, and a prion-based model of neurodegenerative disease that displays impaired cognition, Tobin and Bradley have unequivocally established that selective activation of the M1 muscarinic acetylcholine receptor not only improves cognition, a key requirement for any new therapy designed to treat the cognitive decline associated with progression of Alzheimers dementia, but also may actually slow neurodegenerative progression. This work is linked directly to studies being conducted by the pharmaceutical company Eli Lilly. An approach within these studies of generating mouse transgenic ‘knock-in’ lines of receptors modified to act as ‘Designer Receptors Exclusively Activated by Designer Drugs’ has not only been integral to these studies but has inspired the group to broaden this approach to the type of ‘hard to target’ G protein-coupled receptors, a concept developed and reduced to practice by Hudson and Milligan for free fatty acid receptor 2.

Study options

PhD

  • Duration: 3/4 years full-time; 5 years part-time

Individual research projects are tailored around the expertise of principal investigators.

Integrated PhD programmes (5 years)

Our Integrated PhD allows you to combine masters level teaching with your chosen research direction in a 1+3+1 format. 

International students with MSc and PhD scholarships/funding do not have to apply for 2 visas or exit and re-enter the country between programmes. International and UK/EU students may apply.

Year 1

Taught masters level modules are taken alongside students on our masters programmes. Our research-led teaching supports you to fine tune your research ideas and discuss these with potential PhD supervisors. You will gain a valuable introduction to academic topics, research methods, laboratory skills and the critical evaluation of research data. Your grades must meet our requirements in order to gain entry on to your pre-selected PhD research project. If not, you will have the options to pay outstanding MSc fees and complete with masters degree only.

Years 2, 3 and 4

PhD programme with research/lab work, completing an examinable piece of independent research in year 4.

Year 5

Thesis write up.

MSc (Research)

  • Duration: 1 year full-time; 2 years part-time

Entry requirements

A 2.1 Honours degree or equivalent.

English language requirements

For applicants whose first language is not English, the University sets a minimum English Language proficiency level.

International English Language Testing System (IELTS) Academic module (not General Training)

  • 6.5 with no subtests under 6.0
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test
  • IELTS One Skill Retake accepted.

Common equivalent English language qualifications accepted for entry to this programme:

TOEFL (ibt, my best or athome)

  • 79; with Reading 13; Listening 12; Speaking 18;Writing 21
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements , this includes TOEFL mybest.

Pearsons PTE Academic

  • 59 with minimum 59 in all subtests
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test.

Cambridge Proficiency in English (CPE) and Cambridge Advanced English (CAE)

  • 176 overall, no subtest less than 169
  • Tests must have been taken within 2 years 5 months of start date. Applicants must meet the overall and subtest requirements using a single test.

Oxford English Test

  • Oxford ELLT 7
  • R&L: OIDI level no less than 6 with Reading: 21-24 Listening: 15-17
  • W&S: OIDI level no less than 6

Trinity College Tests

Integrated Skills in English II & III & IV: ISEII Distinction with Distinction in all sub-tests.

University of Glasgow Pre-sessional courses

Tests are accepted for 2 years following date of successful completion.

Alternatives to English Language qualification

  • Degree from majority-English speaking country (as defined by the UKVI including Canada if taught in English)
    • students must have studied for a minimum of 2 years at Undergraduate level, or 9 months at Master's level, and must have complete their degree in that majority-English speaking country and within the last 6 years
  • Undergraduate 2+2 degree from majority-English speaking country (as defined by the UKVI including Canada if taught in English)
    • students must have completed their final two years study in that majority-English speaking country and within the last 6 years

For international students, the Home Office has confirmed that the University can choose to use these tests to make its own assessment of English language ability for visa applications to degree level programmes. The University is also able to accept UKVI approved Secure English Language Tests (SELT) but we do not require a specific UKVI SELT for degree level programmes. We therefore still accept any of the English tests listed for admission to this programme.

Pre-sessional courses

The University of Glasgow accepts evidence of the required language level from the English for Academic Study Unit Pre-sessional courses. We also consider other BALEAP accredited pre-sessional courses:

Fees and funding

Fees

2025/26

  • UK: To be confirmed [24/25 fee was £4,786]
  • International & EU: £31,800

Prices are based on the annual fee for full-time study. Fees for part-time study are half the full-time fee.

Irish nationals who are living in the Common Travel Area of the UK, EU nationals with settled or pre-settled status, and Internationals with Indefinite Leave to remain status can also qualify for home fee status.

Alumni discount

We offer a 20% discount to our alumni on all Postgraduate Research and full Postgraduate Taught Masters programmes. This includes University of Glasgow graduates and those who have completed Junior Year Abroad, Exchange programme or International Summer School with us. The discount is applied at registration for students who are not in receipt of another discount or scholarship funded by the University. No additional application is required.

Possible additional fees

  • Re-submission by a research student £540
  • Submission for a higher degree by published work £1,355
  • Submission of thesis after deadline lapsed £350
  • Submission by staff in receipt of staff scholarship £790

Depending on the nature of the research project, some students will be expected to pay a bench fee (also known as research support costs) to cover additional costs. The exact amount will be provided in the offer letter.

Funding

The IPhD is not supported by University of Glasgow Scholarship/Funding

Support

The College of Medical, Veterinary and Life Sciences Graduate School provides a vibrant, supportive and stimulating environment for all our postgraduate students. We aim to provide excellent support for our postgraduates through dedicated postgraduate convenors, highly trained supervisors and pastoral support for each student.
 
Our overarching aim is to provide a research training environment that includes:

  • provision of excellent facilities and cutting edge techniques
  • training in essential research and generic skills
  • excellence in supervision and mentoring
  • interactive discussion groups and seminars
  • an atmosphere that fosters critical cultural policy and research analysis
  • synergy between research groups and areas
  • extensive multidisciplinary and collaborative research
  • extensive external collaborations both within and beyond the UK 
  • a robust generic skills programme including opportunities in social and commercial training

Research environment

If you study with us, you will join a community of 26 postgraduate taught and 150 postgraduate research students. Our School brings together world-leading basic, applied, clinical and translational researchers to study infection with a focus on the viral, parasitic and bacterial pathogens of both humans and animals, and immunology and inflammation with a focus on chronic inflammatory diseases.

Despite the continual development of new therapies, antibiotics and vaccines, chronic inflammatory and infectious diseases still pose persistent health threats. We aim to:

  • understand the basic science of the immune systems and how the immune system can inturn affect disease outcome understand the biology of parasites, viruse and bacteria and the interactions with their hosts, that in turn leads to high levels of infectious diseases worldwide
  • develop therapies (drugs and vaccines) targeted on these processes
  • explore new treatments and strategies in clinical and translational medicine

Research centres:

How to apply

Identify potential supervisors

All Postgraduate Research Students are allocated a supervisor who will act as the main source of academic support and research mentoring. You may want to identify a potential supervisor and contact them to discuss your research proposal before you apply. Please note, even if you have spoken to an academic staff member about your proposal you still need to submit an online application form.

You can find relevant academic staff members with our staff research interests search.

IPhD & research projects

IPhD Option A

Applicants do not need to contact a supervisor.  You will choose from a list of IPhD projects and each project has named supervisors linked to that project.

IPhD Option B

You will submit a research proposal of approximately 1000 words.  The proposal must include:

  • a straightforward, descriptive, and informative title
  • the question that your research will address
  • an account of why this question is important and worth investigating
  • an assessment of how your own research will engage with recent research in the field
  • a brief account of the methodology and approach you will take.

Based on your proposal, your supervisor will choose an MSc programme that aligns with your research interests.

You will need to contact a supervisor prior to application, using our search to identify a suitable supervisor.

Supervisor search

Research projects

If you are seeking to apply for any research project, you can identify this within your application to the PhD programme. Please ensure that you highlight the title of the research project you are interested in on your application.

Gather your documents

Before applying please make sure you gather the following supporting documentation:

  1. Final or current degree transcripts including grades (and an official translation, if needed) – scanned copy in colour of the original document.
  2. Degree certificates (and an official translation, if needed): scanned copy in colour of the original document.
  3. Two references on headed paper and signed by the referee. One must be academic, the other can be academic or professional (except IPhD applicants, where only one academic or professional reference is required). References may be uploaded as part of the application form or you may enter your referees' contact details on the application form. We will then email your referee and notify you when we receive the reference.
  4. Research proposal (if applying for PhD or MScR), CV, samples of written work as per requirements for each subject area.
Apply now

Contact us

If you require assistance before you apply: mvls-gradschool@glasgow.ac.uk 

After you have submitted your application: Admissions Enquiries form