University of Glasgow unveils Star Trek-inspired diagnostic device
Published: 24 September 2018
A Star Trek-inspired handheld device based on a silicon chip could help make rapid, sophisticated medical diagnostics more accessible to people around the world, scientists say.
A Star Trek-inspired handheld device based on a silicon chip could help make rapid, sophisticated medical diagnostics more accessible to people around the world, scientists say.
In a new paper published in the journal Biosensors and Bioelectronics, researchers from the University of Glasgow describe the latest development in their ‘multicorder’ project, inspired by Star Trek’s famous tricorder device, which the show’s medics use to make quick and accurate diagnoses.
Their new device, which pairs a handheld sensor with a smartphone app, measures the levels of various metabolites in fluid samples from patients.
Metabolites are small molecules found in fluids from the human body. By measuring and monitoring their relative abundance, scientists can keep track of general heath or the progression of specific diseases.
The ability to rapidly detect and quantify multiple metabolite biomarkers simultaneously makes this device particularly useful in cases of heart attack, cancer and stroke, where rapid diagnosis is vital for effective treatment.
While metabolites can currently be measured by existing processes such as nuclear magnetic resonance and hyphenated mass spectrometry techniques, both approaches are expensive and require bulky equipment which can be slow to offer diagnostic results.
The researchers’ new device is built around a new form of complementary metal oxide semiconductor (CMOS) chip. CMOS chips are inexpensive to produce and are often used in imaging devices.
The chip is smaller than a fingertip and is divided into multiple reaction zones to detect and quantify four metabolites simultaneously from body fluid such as serum or urine. The device can be operated via any Android-based tablet or smartphone which provides data acquisition, computation, visualisation and power.
Dr Samadhan Patil of the University of Glasgow’s School of Engineering is lead author on the paper. Dr Patil said: “We have been able to detect and measure multiple metabolites associated with myocardial infarction, or heart attack, and prostate cancer simultaneously using this device. This device has potential to track progression of the disease in its early phase and is ideally suited for the subsequent prognosis”.
Professor David Cumming, Principal Investigator of the project from University’s School of Engineering said: “Handheld, inexpensive diagnostic devices capable of accurately measuring metabolites open up a wide range of applications for medicine, and with this latest development we’ve taken an important step closer to bringing such a device to market.”
“It’s an exciting breakthrough and we’re keen to continue building on the technology we’ve developed so far.”
Professor Mike Barrett of the University’s School of Life Sciences, co-investigator of the project, said: “This new handheld device offers democratisation of metabolomics, which is otherwise confined within the laboratory, and offers low cost alternative to study complex pathways in different diseases”.
The paper, titled ‘An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites’, is published in Biosensors and Bioelectronics.
The project was supported by funding from the Engineering and Physical Sciences Research Council (EPSRC).
First published: 24 September 2018
<< September
Related links
Dr Samadhan Patil - research profile
Professor David Cumming - research profile
Professor Mike Barrett - research profile
James Watt School of Engineering
School of Life Sciences