Projects and Supervisors

ID	S'visor	Students	Project Title	Project Description	Consumables	Reading
1	Sajjad Hussain	1-2	LLM Powered Personalised Learning	learning methods and models. The focus of this project will be on creating the differentiation between general LLM and tailored LLM solutions as per the needs of the learners.		1) https://arxiv.org/abs/2405.11070 2) https://ieeexplore.ieee.org/document/10628100"
2	Atif Jafri	2	Exploring the of IGLOO 2 FPGAs for low power DDS Implementation	IGLOO2 are power effiecient FPGAs offered by Microchip. In this project, the students will develop low power Direct Digital Synthesis (DDS) circuits and evaluate different architecture of DDS forhardware used, clock speed and power utilization. They will learn the Libero SoC Design Suite which is development environment for these FPGAs.	IGLOO2 Evaluation Kit	https://www.microchip.com/en-us/development-tool/m2gl-eval-kit
3	Atif Jafri	2	Vitis AI for AI Inference Implementation on Ultrascale+ MPSoC		Kria KV260 Vision Al Starter Kit	https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/release_documentation.html https://docs.amd.com/r/en-US/pg338-dpu?tocId=3xsG16y_QFTWvAJKHbisEw
4	Atif Jafri		Communication System Implementation on RFSoC	RFSoC are multiprocessor platforms with FPGA fabric and RF ADC/DACs. In this project, the students will learn to develop components of digital communciation system on FPGA. They will also learn how these compomets can be controlled through processing systems of RFSoC using PYNQ framework.	RFSoC 4x2 Board	https://www.rfsoc-pynq.io/ https://pynq.readthedocs.io/en/v2.0/overlay_design_methodology/overlay_tutorial.html
5	Yihuai Zhang		Design and develope the novel microwave tools for rock fracturing	Rock fracturing is a critical process in various engineering fields, traditionally achieved through explosives or mechanical drills. Recent research suggests that microwaves can be used to heat rock, inducing thermal stress and micro-cracking, which facilitates easier breakage. This project will combine both experimental and computational methods to: 1, develop design concepts for a microwave tool optimised for rock fracturing. This phase will involve creating prototypes—potentially using computer-aided design (CAD) software— and considering factors such as microwave		https://link.springer.com/article/10.1007/s00603-019-01790-z https://www.sciencedirect.com/science/article/pii/S1995822622000024 https://link.springer.com/article/10.1007/s00603-022-02956-y

	1 1					
				frequency, power output, and tool geometry to		
				maximise efficiency and safety. 2. Make and		
				test the prototypes on rock samples under		
				controlled laboratory conditions.		
				Measurements will include temperature		
				profiles, fracture patterns, and energy		
				consumption. Data from these tests will be		
				used to refine the tool design and improve		
				performance.		
6	Prof.		Al-Driven Tennis	The goal of this project is to develop a compact	Tennis ball	1) https://pmc.ncbi.nlm.nih.gov/articles/PMC3990883/
	Rami		Ball Trajectory		machine, NVIDIA	2) https://pmc.ncbi.nlm.nih.gov/articles/PMC4879439/
	Ghanna		and Spin		Jetson Nano	z) maps, / principal minimized variables / meters / sess
	m		Analysis		Developer Kit,	
					Logitech HD	
				real-time and apply artificial intelligence (AI)	Camera	
				models to predict ball trajectory, speed and		
				spin characteristics. Based on images		
		2		collected from a camera and a microcontroller,		
		2		an algorithm will be developed to extract ball		
				movement data. Students will will also train		
				machine learning models to predict ball		
				trajectory and spin. The project team will		
				consist of two students, who might wish to		
				divide the work so that one focuses on image		
				processing and tracking, while the other works		
				on Al-based predictions and modeling.		
7	Bo Liu		Al driven design	· · ·	aaftwara liaanaaa	The student and lower the velocity of the survey large through the formula
/	DO LIU		Al-driven design			The student can learn the related AI knowledge through UofG online course
			of microwave		fabrication	(https://www.coursera.org/specializations/matlab?action=enroll), but it is optional.
			antennas: the	techniques can obtain designs with high		
			next generation	performance that human designers are not		
			methodology	able to, and also with a much shorter time-to-		
			0,	market. The CSI Group, University of Glasgow,		
				has developed state-of-the-art algorithms for		
				Al-driven antenna design and was embedded		
				_		
				into MATLAB. In this project, you will get		
				familiar with state-of-the-art Al-driven antenna		
		4		design tools and practice them in simple		
				antenna design cases that appear in daily life.		
				This opportunity will lead to a final year project		
				working on the Al-driven design of modern and		
				advanced antennas, which may lead to		
				publications. According to your performance,		
				future postgraduate study training you to		
				become a first-generation antenna design		
				engineer armed with AI-based design		
				methodology is possible. This project requires		
				outstanding problem-solving skills and the		
L	1			portoralitating problem souring skills and the		

				student must be a quick learner. The top 5% of		
				students are encouraged to participate.		
8	Julien Le		Victor Chen's	The student will reproduce code from Victor	None	https://eprints.gla.ac.uk/304566/3/304566.pdf
0	Kernec			Chen's book on rotor simulation and then	None	https://go.exlibris.link/SxmhjRD9
	Konnoo		-	emulate different targets such as drone (x2		indps.//go.cxiloris.inik/sximily.os
			Tauar Signatures	students) and rovers (x2 student) configuration		
		4		and flight path. This can evolve to a 4D radar		
		4		simulator where the code for it can be found on		
				Github		
				https://github.com/JASONZ777/4D_radar_sim		
_	1		F ara and a t ile at	ulator_PointNet	N	https://www.interster.com//204566/2/204566/2/2045
9	Julien Le		From motion	In this project, 2 students will work on getting	None	https://eprints.gla.ac.uk/304566/3/304566.pdf
	Kernec	2	capture to radar	motion capture data integrated in the victor		https://go.exlibris.link/SxmhjRD9
			emulation	chen simulation framework and then move to		
4-				4D radar if time allows.		
10	Julien Le			Mental fatigue is an important aspect of	None	https://www.nature.com/articles/s41746-021-00415-6
	Kernec			alertness and wellbeing. Existing fatigue tests		
				are subjective and/or time-consuming. Here,		
			of mental fatigue	we show that smartphone-based gaze is		
				significantly impaired with mental fatigue, and		
				tracks the onset and progression of fatigue. A		
		2		simple model predicts mental fatigue reliably		
				using just a few minutes of gaze data. These		
				results suggest that smartphone-based gaze		
				could provide a scalable, digital biomarker of		
				mental fatigue.		
				You role would be to develop the app towards		
				reproducing those results (x2 students)		
11	Julien Le		-	The increasing access to drone technology	None	https://research.birmingham.ac.uk/en/publications/multi-rotor-drone-micro-doppler-simulation-
	Kernec		lines with radar	over the past decade has resulted in new		incorporating-genuine-
			using a	technological adaptions that are beneficial in		
			mechanical rotor	many sectors. However, this has led to an		
				increased risk of this technology being		
				exploited for malicious purposes. This has also		
				caused an increased presence of drones in		
				civilian airspace and interference with the day-		
				to-day operation of airports. Events such as		
		2		the closure of Gatwick in December of 2018		
				and a hostile drone attack in Saudi Arabia in		
				September 2019 have publicized the need for		
				counter-drone technology. A key component of		
				counter-drone technology is the		
				noncooperative detection of drones. It is		
				important to be able to discriminate between		
				birds and drones to avoid too many false		
				alarms. One of the components that		
L				distinguish the 2 is HERM lines. Small airborne		

	г					
				targets have been shown to exhibit		
				distinguishing features in their frequency		
				domain spectra that relate to their micro-		
				Doppler signatures. Drones that have rotating		
				blades cause a modulation in addition to the		
				main body Doppler, resulting in multiple micro-		
				Doppler components. In contrast, birds that		
				otherwise have a similar echo strength to		
				drones tend to present with one or two		
				components in their micro-Doppler responses		
				due to the beating effect of their wings. Birds		
				can also fly in flocks, which results in Doppler		
				signatures that may closely resemble a drone		
				target. In this project, you will work on the		
				effect of polarisation and interferometry in the		
				detection of HERM lines for a hovering drone		
				and then move towards some more realistic		
				flight parameters with different attitudes to		
				study the evolution of HERM lines in radar		
				micro-Doppler to devise effective detection		
				comparing machine learning versus rule-based		
				approaches.		
				You will work with an X band component of the		
				shelf radar for frequency diversity and		
				polarisation effects on drone HERM lines from		
				an FMCW radar.		
12	Julien Le				None	https://eprints.gla.ac.uk/304566/3/304566.pdf
	Kernec			accuracy difference between motion capture		https://go.exlibris.link/SxmhjRD9
				and emulated radar signatures using the victor		······································
		2		chen framework		
		2	signatures with	onormaniowonk		
			machine learning			
10	1.1		techniques		Quetie el fil	
13	Lianping		-	Project Overview		S. Zhu, B. Yuan, M. Al-Rubaiee, Y. Sun, Y. Fan, A. S. Hezarfen, S. J. Sweeney, J. H. Marsh, and L.
	Hou			. ,	electrical test	Hou, "Widely Tunable Photonic Filter Based on Equivalent Chirped Four-Phase-Shifted Sampled
						Bragg Gratings," ACS Photonics, 2025. (https://doi.org/10.1021/acsphotonics.4c01899)
					COMSOL	
				key technology for advanced optical	simulation tools	
				communication and microwave photonics.		
		2		Based on the recent work by Zhu et al. (2025)		
		Z		on equivalent chirped four-phase-shifted		
				sampled Bragg gratings (EC-4PS-SBGs),		
				students will explore novel photonic filter		
				designs, their fabrication processes, and		
				practical applications.		
				Objectives		
				Objectives		

				 Understand the fundamental principles of 		
				photonic filters and their role in modern		
				communication networks.		
				Analyze the design and operational		
				characteristics of EC-4PS-SBG-based filters.		
				• Gain hands-on experience with optical		
				simulation tools such as Lumerical and		
				MATLAB.		
				 Conduct experimental measurements of 		
				filter responses using optical test setups.		
				 Investigate potential applications in 		
				microwave photonics and signal processing.		
				Expected Outcomes		
				A strong foundational understanding of		
				tunable photonic filters.		
				Practical skills in simulation, experimental		
				characterisation, and data analysis.		
				Enhanced technical communication through		
				report writing and presentations.		
				 Potential contributions to ongoing research in 		
				photonic integrated circuits.		
				Conclusion		
				This project provides an excellent opportunity		
				for undergraduate students to engage in state-		
				of-the-art photonics research, develop hands-		
				on skills, and contribute to advancing optical		
				communication technologies. Exceptional		
				students may be encouraged to pursue further		
				research opportunities or co-author		
				conference presentations based on their		
				findings.		
				This project is not subject to export control as		
				it builds upon the work published in our paper:		
				S. Zhu, B. Yuan, M. Al-Rubaiee, Y. Sun, Y. Fan,		
				A. S. Hezarfen, S. J. Sweeney, J. H. Marsh, and		
				L. Hou, "Widely Tunable Photonic Filter Based		
				on Equivalent Chirped Four-Phase-Shifted		
				Sampled Bragg Gratings," ACS Photonics,		
				2025.		
				(https://doi.org/10.1021/acsphotonics.4c0189		
				9).		
14	Lianping			Project Overview	Optical fibers,	L. Hou, Y. Huang, Y. Liu, R. Zhang, J. Wang, B. Wang, H. Zhu, B. Hou, B. Qiu, and J. H. Marsh,
	Hou	2	Applications of	This summer school project will introduce	electrical test	"Frequency comb with 100 GHz spacing generated by an asymmetric MQW passively mode-
			Optical	undergraduate students to the concept of	probes, FDTD, and	locked laser," Opt. Lett., vol. 45, no.10, pp.2760-2763, 2020. DOI: 10.1364/OL.392191

1 1	[=			
	Frequency	optical frequency combs and their generation	MATLAB	
	Combs Using	using passively mode-locked lasers. Based on	simulation tools	
	Mode-Locked	the work by Hou et al. (2020) on asymmetric		
	Lasers	multiple quantum well (MQW) passively mode-		
		locked lasers for 100 GHz frequency comb		
		generation, students will explore the design,		
		simulation, and characterization of frequency		
		combs and their applications in optical		
		communications and spectroscopy.		
		Objectives		
		Understand the fundamentals of optical		
		-		
		frequency combs and mode-locking		
		techniques.		
		 Study the operational principles of MQW 		
		passively mode-locked lasers.		
		Gain experience with optical simulation tools		
		such as Lumerical and MATLAB.		
		 Conduct experimental measurements of 		
		mode-locked laser outputs.		
		 Investigate potential applications in high- 		
		speed optical communications and metrology.		
		speed optical communications and metrology.		
		Expected Outcomes		
		• A solid understanding of optical frequency		
		comb generation and mode-locking		
		techniques.		
		Hands-on skills in simulation, laser		
		characterisation, and data analysis.		
		Improved technical communication through		
		report writing and presentations.		
		 Encouragement for students to pursue 		
		further research opportunities in photonics.		
		Que alvaire		
		Conclusion		
		This project provides undergraduate students		
		with an opportunity to engage in advanced		
		photonics research, develop technical skills,		
		and contribute to ongoing developments in		
		frequency comb technology. Exceptional		
		students may be encouraged to explore further		
		research opportunities or co-author		
		conference presentations based on their		
		findings.		
		This project does not fall under export control		
		because it repeats the work in our published		
1	l		1	

				paper "L. Hou, Y. Huang, Y. Liu, R. Zhang, J. Wang, B. Wang, H. Zhu, B. Hou, B. Qiu, and J.		
				H. Marsh, "Frequency comb with 100 GHz spacing generated by an asymmetric MQW		
				passively mode-locked laser," Opt. Lett., vol.		
				45, no.10, pp.2760-2763, 2020. DOI:		
				10.1364/OL.392191".		
15	Lianping		Optical Control	Project Overview		A. S. Hezarfen, S. Zhu, B. Yuan, S. J. Sweeney, L. Hou, "Harnessing the Mechanical Kerr Effect for
	Hou		in Photonic Crystal		electrical test probes, FDTD, and	Optical Control in Photonic Crystal Nanobeam Cavities," submitted to CLEO 2025.
			Nanobeam		COMSOL	
			Cavities via the	. ,	simulation tools	
			Mechanical Kerr	induced by high-power light deform nanobeam		
			Effect	cavities to tune optical resonances. By		
				fabricating, simulating, and experimentally		
				characterising PCNCs, students will gain hands-on experience in nanophotonics,		
				optical characterisation, and numerical		
				simulations using COMSOL and Lumerical		
				FDTD. The project aims to provide insights into		
				tunable photonic devices for applications such		
				as reconfigurable optical filters and sensors.		
				Project Objectives		
				By the end of the project, students will:		
				• Understand the principles of optomechanics,		
		2		optical gradient forces, and the mechanical		
				Kerr effect. Learn the fundamentals of photonic crystal 		
				nanobeam cavities and their fabrication.		
				• Perform optical characterisation of PCNCs,		
				including transmission spectrum		
				measurements and resonance tuning.		
				• Use COMSOL and Lumerical FDTD to simulate mechanical deformation and optical		
				tuning.		
				Analyse and interpret experimental and		
				simulation data.		
				 Present findings in a final report and 		
				presentation.		
				Expected Outcomes		
				A deeper understanding of optomechanical		
				interactions in photonic devices.		
				Hands-on experience in nanophotonic		
				simulations and optical characterisation.		
				• A well-documented report on experimental		

				findings and data analysis.		
				Improved technical presentation and		
				scientific communication skills.		
				Skills Gained		
				 Optical characterisation techniques 		
				 Finite-difference time-domain (FDTD) 		
				simulations		
				Mechanical deformation analysis with		
				COMSOL		
				Data processing and visualisation		
				Scientific writing and presentation skills		
				· ocientine writing and presentation skitts		
				This project is not subject to expert control, or		
				This project is not subject to export control, as		
				it is based on publicly available research		
				detailed in our paper: A. S. Hezarfen, S. Zhu, B.		
				Yuan, S. J. Sweeney, L. Hou, "Harnessing the		
				Mechanical Kerr Effect for Optical Control in		
				Photonic Crystal Nanobeam Cavities,"		
				submitted to CLEO 2025.		
16	Lianping		Design and	Project Overview:	Optical fibers,	M. Al-Rubaiee, X. Sun, B. Yuan, Y. Fan, S. Zhu, Y. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Tri-
	Hou		Characterization	This project focuses on designing and	electrical test	Wavelength Mode-Locked DFB Laser with Uniform Bragg Grating," submitted to CLEO 2025.
			of a Multi-	characterising a multi-wavelength mode-	probes, FDTD, and	
			Wavelength	locked Distributed Feedback (DFB) laser that	MATLAB	
			Mode-Locked	uses uniform Bragg gratings for multi-	simulation tools	
			DFB Laser with	wavelength mode-locking. Mode-locked		
			Uniform Bragg	lasers, particularly those with multi-		
			Gratings	wavelength operation, are essential for		
				applications in telecommunications,		
				spectroscopy, and Dense Wavelength Division		
				Multiplexing (DWDM). This project involves the		
				design of a DFB laser, including simulation of		
				its optical properties, understanding the role of		
		2		Bragg gratings in mode-locking, and applying		
				experimental characterisation techniques		
				such as optical spectrum analysis and		
				autocorrelation to analyse the device's		
				performance.		
				By completing this project, students will		
				understand key concepts in photonics, laser		
				design, and mode-locking, as well as acquire		
				practical experience with simulations and		
				experimental characterisation.		
				Objectivest		
				Objectives:		
				1. Design a Multi-Wavelength Mode-Locked		
1			1	DFB Laser: Learn how to design a Distributed	1	

	Feedback (DFB) laser capable of multi-	
	wavelength mode-locking using uniform Bragg	
	gratings.	
	2. Simulate the Laser Performance: Utilise	
	simulation tools to predict the optical	
	spectrum and performance of the designed	
	DFB laser, including multi-wavelength lasing,	
	pulse width, and repetition rates.	
	3. Experimental Characterization (Virtual or	
	Experimental): Understand the measurement	
	techniques for characterising mode-locked	
	DFB lasers, including the use of an Optical	
	Spectrum Analyzer (OSA) and Autocorrelation	
	(AC) measurements.	
	4. Data Analysis and Reporting: Analyse the	
	experimental and simulation results, and	
	compile a comprehensive report detailing the	
	design process, results, and conclusions.	
	5. Presentation of Findings: Prepare and	
	present the design and results of the project in	
	a concise and clear presentation.	
	Expected Outcomes:	
	By the end of the project, students will be able	
	to:	
	1. Design a Multi-Wavelength Mode-Locked	
	DFB Laser: Understand the principles of DFB	
	lasers and how to design them to operate with	
	multiple wavelengths.	
	2. Simulate Laser Performance: Accurately	
	simulate and predict the performance of a tri-	
	wavelength mode-locked DFB laser, focusing	
	on spectral output and pulse characteristics.	
	3. Understand Measurement Techniques: Gain	
	practical knowledge in characterising mode-	
	locked lasers, including spectrum analysis and	
	autocorrelation measurements.	
	4. Analyse Experimental Data: Be able to	
	analyse and interpret laser data, including	
	spectral measurements and pulse widths, to	
	assess laser performance.	
	5. Communicate Results Effectively: Present	
	the project's design, results, and implications	
	through a report and a final presentation.	
	Skills Gained:	
	 1. Laser Design and Simulation:	

	1			1 1 1 1 1 1 1 1 1 1		
				Learn to design semiconductor lasers using		
				simulation software, including optimising		
				parameters like microcavity length and grating		
				period.		
				2. Photonics Measurement Techniques:		
				Gain hands-on experience (or virtual		
				experience) with tools for measuring laser		
				performance, including optical spectrum		
				analysers and autocorrelation devices.		
				3. Data Analysis and Interpretation:		
				Develop skills in analysing complex data,		
				understanding optical spectra, and measuring		
				pulse width and repetition rate from time-		
				domain signals.		
				4. Scientific Writing and Reporting:		
				Strengthen technical writing skills by		
				documenting the design, experimental		
				methods, results, and conclusions in a		
				professional report.		
				5. Presentation Skills:		
				Enhance communication skills by preparing		
				and presenting a concise and clear project		
				presentation to an audience.		
				This project is not subject to export control, as		
				it is based on publicly available research		
				detailed in our paper: M. Al-Rubaiee, X. Sun, B.		
				Yuan, Y. Fan, S. Zhu, Y. Sun, J. H. Marsh, S. J.		
				Sweeney, L. Hou, "Tri-Wavelength Mode-		
				Locked DFB Laser with Uniform Bragg Grating,"		
				submitted to CLEO 2025.		
17	Lianping			-	Optical fibers,	M. Al-Rubaiee, B. Yuan, Y. Fan, S. Zhu, Y. Sun, X. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Four-
	Hou		-	Mode-locked distributed feedback (DFB) lasers		Wavelength Mode-Locked DFB Laser Using Chirped Sampled Bragg Grating," submitted to CLEO
			Mode-Locked	are compact and efficient sources for	probes, FDTD, and	Europe 2025.
			DFB Lasers Using		MATLAB	
					simulation tools	
				design, fabrication principles, and		
				characterisation of a four-wavelength mode-		
				locked DFB laser using chirped sampled Bragg		
		2		gratings (C-SBGs). Students will gain		
				theoretical insights into mode-locking,		
				semiconductor laser operation, and		
				experimental skills in optical characterisation.		
				experimental skills in optical characterisation.		
				Project Objectives		
				Project Objectives		
				By the end of the project, students will:		
				1. Understand the principles of mode-locking		

				 and multi-wavelength DFB lasers. 2. Learn about chirped sampled Bragg gratings (C-SBGs) and their impact on laser stability. 3. Perform optical characterisation of a multi- wavelength mode-locked laser, including spectrum, autocorrelation, and pulse width measurements. 4. Analyse data to evaluate the performance of mode-locked laser sources. 5. Present findings through a final report and presentation. Expected Outcomes A comprehensive understanding of mode- locked DFB laser operation. Hands-on experience in semiconductor laser characterisation techniques. A well-documented report on experimental findings and data analysis. Improved technical presentation and scientific communication skills. Skills Gained Optical characterisation techniques Data analysis and visualisation Scientific writing and presentation Problem-solving and teamwork This project is not subject to export control, as it is based on publicly available research detailed in our paper: M. Al-Rubaiee, B. Yuan, Y. Fan, S. Zhu, Y. Sun, X. Sun, J. H. Marsh, S. J. Sweeney, L. Hou, "Four-Wavelength Mode- Locked DFB Laser Using Chirped Sampled Bragg Grating," submitted to CLEO Europe 2025 		
18	Hasan		Construct Super	2025. Structured Illumination Microscopy (SIM) has	Microscope	Hannebelle, Mélanie TM, et al. "Open-source microscope add-on for structured illumination
	Abbas	4	resolution	been pivotal in transcending the diffraction limit of conventional optical microscopy, enabling the visualization of biological	components (optics, electronics, 3D printed structures)	microscopy." Nature Communications 15.1 (2024): 1550. Marcel Müller, Viola Mönkemöller, Simon Hennig, Wolfgang Hübner, Thomas Huser (2016). "Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ", Nature Communications, doi: 10.1038/ncomms10980 Cao, Ruijie, et al. "Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform." Nature Methods 20.8 (2023): 1183-1186

	<u>г</u>					
				way to construct microscopes. In parallel, you		Wang, Haoran, et al. "UCsim2: 2D structured illumination microscopy using UC2." bioRxiv (2021):
				will also use SISRR-SIM, a novel deep learning-		2021-01.
				based approach that addresses these		
				challenges through an encoder-decoder neural		
				network architecture. SRR-SIM reconstructs		
				high-frequency details lost during optical		
				imaging, surpassing the capabilities of		
				traditional algorithms. You will learn		
				performance assessment criteria such as the		
				Structured Similarity Index (SSIM) to assess the		
				reconstruction quality.		
19	Shuja		Real-Time Sensor		RPi, cloud	RPi tutorials, app building tutorials, Bluetooth comms
						Ref tutoriais, app bunuing tutoriais, bluetootri commis
	Ansari		Integration and		instances for App	
					hosting, sensors	
				communication. The objective is to interface		
			Pi and	various sensors (such as temperature,		
			Smartphone	humidity, motion, or light sensors) with an RPi,		
				process the collected data, and establish a		
				two-way communication link with a		
				smartphone via Bluetooth.		
				Students will configure the Raspberry Pi to		
				collect sensor data, process it, and transmit		
				the readings to a smartphone application in		
				real time. The smartphone app will not only		
				display sensor readings but also allow users to		
				send control commands back to the RPi. This		
				bidirectional communication will enable		
		4-6		remote monitoring and control of connected		
		10		systems.		
				The project will involve:		
				Configuring the Raspberry Pi for sensor		
				interfacing.		
				 Implementing Bluetooth communication 		
				between the RPi and a smartphone.		
				• Developing a mobile application for real-time		
				sensor data visualisation and control.		
				• Ensuring reliable data transmission and low-		
				latency response.		
				Designing a simple user interface for		
				interaction with the system.		
				This is a systems integration project that		
				requires students to apply skills in embedded		
				systems, wireless communication, and		
				software development, fostering a		
				Souware development, lostering a		

				multidisciplinary approach to IoT-based		
20	Muham mad	(Flexible), Prefer atleast 2 students working in a team to develop	GUI-Based Energy Data Acquisition and Forecasting for Power Utilities	Interface (GUI) to facilitate data acquisition from power utilities and enable load forecasting. To achieve this, the project is divided into two main components, which will ultimately be integrated: Development of a GUI: This component focuses on creating an interface that allows users (e.g., power system operators and researchers) to access, filter, and download historical load data from utilities. The data will be retrievable for a specified date range and	Python packages will be required for both GUI development and load forecasting.	https://ieeexplore.ieee.org/document/10855140
		develop the GUI as well as the load forecastin g models. However, the student must familier with Python or program ming in		exported in CSV format for further processing. Development of Load Forecasting Models: This component involves implementing and evaluating various forecasting models for short-term load forecasting. The acquired data from the GUI will serve as input for these models to generate accurate predictions. Overall, the project will integrate a GUI-based data acquisition system with the forecasting models, enabling automated data retrieval, processing, and prediction of electricity demand.		
		general		Resource: We will reference a similar study (linked below) and attempt to reproduce its results by accessing data from similar utilities mentioned in the paper. If we have enough time, we will add more features to this project. Tools: Python packages for both GUI		
21	Qingshe n Jing	3	Exploring the Fundamentals of Triboelectric Nanogenerator	with the benefit of low cost, wide material	For simulation: Comsol Multiphysics with electric and mechanics	 Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications (https://doi.org/10.1002/eom2.12059 or https://onlinelibrary.wiley.com/doi/full/10.1002/eom2.12059) Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial

		Design.	as internet of things and beyond. Currently there are several types of operation modes for triboelectric nanogenerators, and each has their advantages in unique application scenarios. In this project you will start from	modules. For experiment: various polymer sheets, glue, tape, conductive tape, LED, acrylic board, with access for	Applications (https://doi.org/10.1021/acsnano.2c12458 or https://pubs.acs.org/doi/full/10.1021/acsnano.2c12458)
			working mechanism of different modes of	workshop processing, etc.	
22	Qingshe n Jing	Based Force Sensor: From Simulation to Reach Innovative Insights	health care fields. A thin, conformable microfluidic force sensor is proposed that can effectively convert forces into electric signals via microfluidic phenomenon in confined spaces. The project requires you to comprehensively optimize the structure design by consider about tuning the key factors using simulation. Prototype is encouraged to be built to demonstrate the optimization.	electric and mechanics modules. For experiment: various polymer sheets, glass slides, conductive	 Aerosol-jet-printed, conformable microfluidic force sensors (https://doi.org/10.1016/j.xcrp.2021.100386 or https://www.sciencedirect.com/science/article/pii/S266638642100076X) Conformable and robust microfluidic force sensors to enable precision joint replacement surgery (https://doi.org/10.1016/j.matdes.2022.110747 or https://www.sciencedirect.com/science/article/pii/S0264127522003690)
23	Wasim Ahmad	Recognition to Enhance Human- Robot Interaction	interaction (HRI) will become the norm. Therefore, it is expected to make human-robot interaction more accessible and natural. This project aims to use published models and tools to implement an emotion recognition system for robots that can recognise the speaker's inner emotions and ideological activity using their voice.	sensors, hardware kit and MATLAB	https://www.sciencedirect.com/science/article/pii/S0167639319302262 https://www.researchgate.net/publication/322651210_Speech_emotion_recognition_research_ an_analysis_of_research_focus
24	Wasim Ahmad	of Conversational Interaction between Human and Robot	With the increasing use of robots in the service sector, face-to-face human-robot communication is likely the most conventional form of human-robot interaction. However, the nature of the conversation in such an interaction depends on the situation in which the exchange occurs. As a result, designing communication for human-robot interaction has gained interest in recent years, although modelling natural conversational interaction between humans and robots is non-trivial. This	Robot, several sensors and GPU,	https://us.softbankrobotics.com/pepper https://standardbots.com/blog/pepper-robot?srsItid=AfmBOorqHKYeeeLTC- V_5tDPe9Ayu3e25wfPRS1JiW6k7nwVs8U0btPg

				nunio at ainee te anen lev nubliale al to -l		
				project aims to employ published tools and		
				available SDKs for conversational AI to design		
				and implement multi-modal human-robot		
				communication interactions.		
25	Qusay		Fabricating and	This project explores Resonant Tunneling	4-6 samples	To follow
	Al-Taai		Realising an RTD-	Diodes (RTDs) as a potential source of	(12x12 mm) from	
			Based	anthropomorphic spiking behaviour, mimicking		
					Photolithography	
					tools (MA6 in	
			for		JWNC) , Etching	
			-			
			Neuromorphic		system (wet/dry) ,	
			Applications	spike-like signals similar to biological neurons.		
					electrical testing	
				(I-V) characteristics and their dynamic		
				response under varying bias conditions.		
				 The project will focus on designing and 		
				fabricating RTD devices for spiking generation		
		2.2		and investigating their feasibility for		
		2-3		neuromorphic systems.		
		students				
				Learning Outcomes:		
				Hands-on experience in		
				micro/nanofabrication techniques		
				(photolithography, thin-film deposition,		
				etching).		
				Understanding of semiconductor device		
				physics and electrical characterization		
				methods.		
				 Exposure to neuromorphic computing 		
				concepts (for RTD project) and how hardware		
				can mimic biological neurons.		
				• Data analysis and comparison with existing		
				literature to evaluate device performance.		
26	Muham		Economic		Python packages	[Basic] Build Optimization Model to Schedule Battery's Operation in Power Grid Systems
	mad			focusing on developing an economic model for		https://medium.com/@yeap0022/basic-build-optimization-model-to-schedule-batterys-
	Aslam		zation of	integrating renewable energy sources (PV and		operation-in-power-grid-systems-51a8c04b3a0e
	, iotarn			wind) along with a Battery Energy Storage		abergrou in bewer Plus absteries argocoupagoe
				System (BESS) into a grid. The objective is to		https://ieeexplore.ieee.org/document/9069731
						https://icccxpiore.ieee.org/uocument/3003/31
				minimize total costs, including investment and		
		2	(BESS) in a Grid	operational expenses. The investment cost		
				accounts for PV, wind, and BESS installation,		
				considering unit costs and capacity		
				constraints. The operational cost includes grid		
				electricity prices, renewable generation, and		
				BESS operation, incorporating both variable		
				and fixed costs. The model ensures optimal		
				power flow while maintaining economic		
I	1					

				fo politicity and an army halance within the		
				feasibility and energy balance within the		
				system.		
				Python optimization package PuLP wil be used		
27	Niamat			This project focuses on the design, simulation,		
	Hussain				Milling Machine,	https://www.mdpi.com/1424-8220/22/15/5558
			of microsrip	operating in the ISM bands (e.g., 2.4 GHz or 5.8	substrate	
			patch antenna	GHz) for wireless communication and IoT		
		2	for ISM	applications. The antenna's performance will		
			(industrial,	be analyzed in terms of gain, bandwidth, return		
			scientific, and	loss, and radiation pattern using simulation		
			medical) bands	tools like CST or HFSS, followed by testing to		
			applications	validate its its simulated results.		
28	Niamat			This project involves the design and analysis of	CST. PCB	https://www.antenna-theory.com/
	Hussain					https://www.nature.com/articles/s41598-023-42569-1
	naooann				graphy Machine,	
					Vector Network	
				ensure reliable signal reception, even in the	Analyzer,	
				presence of polarization mismatches.	substarte	
		2		Performance will be validated through	Substante	
				5		
				simulations using CST or HFSS, followed by		
				prototype fabrication and testing. Students will		
				gain hands-on experience in CP antenna		
				design, characterization, fabrication, and		
				performance measurement.		
29	Muham			This project focuses on designing and		https://uk.mathworks.com/help/sps/ug/on-board-charger-for-two-wheeler-electric-vehicle.html
	mad			comparing two AC-DC converter topologies for		https://ieeexplore.ieee.org/document/8993306
	Aslam			an On-Board Charger (OBC) in a Two-Wheeler		https://www.monolithicpower.com/en/support/videos/high-power-pfc-totem-pole-pfc-vs-
				Electric Vehicle. An existing system (link is		interleaved-boost-pfc.html
				given below) uses a Totem-Pole Power Factor		https://www.edn.com/a-comparison-of-interleaved-boost-and-totem-pole-pfc-topologies/
				Correction (PFC) converter, and we aim to		
			Vehicle	replace it with a Boost PFC converter. The goal		
				is to analyze performance differences and		
				determine the best option for this application.		
		2		We will evaluate both converters based on		
		2		three key performance metrics:		
				Total Harmonic Distortion (THD): Should be		
				below 5%		
				Power Factor (PF): Should be above 80%		
				Efficiency: Should exceed 90%		
				By comparing the outputs of both topologies,		
				we will determine which is more suitable for an		
				On-Board Two-Wheeler Electric Vehicle		
				Charger in terms of efficiency, power quality,		
				and overall system performance.		
	i					

				The model is available here. https://uk.mathworks.com/help/sps/ug/on- board-charger-for-two-wheeler-electric- vehicle.html		
30	Niamat Hussain	2	Isolation Improvement of closely spaced MIMO antennas	This project focuses on enhancing the isolation between closely spaced MIMO antennas to minimize mutual coupling and improve overall system performance. Various techniques, such as defected ground structures (DGS), electromagnetic bandgap (EBG) structures, neutralization lines, and decoupling networks, will be explored. Simulations using CST or HFSS will evaluate isolation performance, followed by prototype fabrication and measurement of key parameters like S- parameters, envelope correlation coefficient (ECC), and diversity gain.	CNC/lithography machine, Vector	https://www.antenna-theory.com/ https://ieeexplore.ieee.org/abstract/document/9750942
31	Anthony Centeno	1-2	Using open source electromagnetic simulation software to model microwave and photonic devices	The student will investigate open source software that can be used in electromagnetic simulations in place of expensive and geographically restricted software.	But access to workstations and/or a HPC will be required.	 Microwave Circuit Modeling Using Eelectromagnetic Field Simulation, Wolfgang J. R. Hoefer, Daniel G. Swanson Jr. ISBN: 9781580536882 Numerical electromagnetics: the FDTD method by Inan, Umran S; Marshall, Robert A 2011. https://meep.readthedocs.io/en/master/ (MEEP-FDTD software) http://ddscat.wikidot.com/user-guide (Discrete Dipole Approximation for photonics) https://pypi.org/project/pyGDM2/ https://www.nottingham.ac.uk/research/groups/ggiemr/our-research/large-scale- electromagnetic-modelling/tlm-time-domain-modelling-code-ggitlm.aspx
32	Andrew Glidle	1-2	An automated method for measuring the focal length of lenses used in optical system research	One of the problems in research groups who have lots of optical components is that people never put things back in the right boxes with optics research, this means that there are large collections of lenses for which people no longer know what the focal length is! This project will build a simple instrument to automatically measure the focal length by collecting images from a target on a CMOS camera and then using software (that the student writes) to automatically calculate the focal length of the unknown lens. The skills acquired will be a good understanding of optical systems and the factors that need to be considered in optical alignment, different types of optomechanical components, software writing and how to generate an 'app' that can be used by inexperienced users. These skills would be useful for people wanting	Thorlabs type components	Any books on classical optics e.g. Optics by Hecht (other titles can be supplied to interested students) - the optics used in this project is 'straight-line' optics and apart from making the instrument (which will be extremely useful), the main advantage will be the skills learned in optical alignment, hardware interfacing and app writing.

				to learn about instrument development and/or		
				optical/microscopy systems. The work would		
				be carried out in the Advanced Bioengineering		
				group labs at the Advanced Research Centre		
				(ARC).		
33	Ahmad		Internet-of-	The world is facing several major challenges,	Energy monitoring	- https://www.sciencedirect.com/science/article/pii/S2352484724003202
	Taha		Things-based	and the race to meet the net-zero carbon target		- https://pmc.ncbi.nlm.nih.gov/articles/PMC7037999/
	lana		Smart	is the biggest of them. The building sector	edge server (this	- https://nodered.org/docs/tutorials/
			Sustainability in		can be joint with	- https://www.geeksforgeeks.org/python-ai/
			Homes and	5	the other project I	- https://www.geeksiolgeeks.org/pytholi-a/
			Offices	inefficient means of using and operating them,	propose).	
				including the energy efficiency of		
				devices/appliances including their phantom		
				load (idle consumption) which can account for		
				10% of the monthly bill. Therefore, it is crucial		
				to explore innovative approaches to tackle this		
				issue, and Smart Home Technology (SHT) has		
				emerged as a promising solution. The		
				proposed project "Internet-of-Things-based		
				Smart Sustainability in Homes and offices"		
				aims to build a system that captures the		
				energy consumption of everyday use		
				appliances and devices used in the home and		
				in offices to explore optimisation opportnities.		
				Examples of appliances and other devices		
		2 to 3		targeted in this project are white goods, i.e.,		
				washing machines, tumble dryers, cookers,		
				desktop computers and screen monitors.		
				Objectives:		
				Data Collection and Management: Design and		
				implement an IoT network to collect and		
				manage data from various sources to build		
				energy consumption profiles of different		
				appliances and devices. (Student 1)		
				· · · · · · · · · · · · · · · · · · ·		
				Design, develop, and test an algorithm for		
				monitoring, coordinating, and controlling the		
				appliances/devices. The student is to explore		
				the best approach to designing this algorithm		
				through, e.g., Machine/Deep Learning, Fuzzy		
				Logic, etc. (Student 2)		
				Design and develop an interactive user		
				interface for data visualisation. (Student 1 and		
				Student 2)		

0.4	A la vaol		laT hasa d		Edge community (al.	
34	Ahmad		loT-based	Contactless Human Activity Recognition (HAR)		- https://nodered.org/docs/tutorials/
	Taha		Contactless	has gained significant attention in the past 10+		- https://www.geeksforgeeks.org/python-ai/
			Human Activity	-	the other project I	 https://ieeexplore.ieee.org/abstract/document/9740207/
			Recognition	privacy-preserving means of monitoring	propose)	- https://link.springer.com/article/10.1007/s10462-021-10116-x
				occupancy and activities in homes and offices.		
				Existing approaches for HAR, such as cameras		
				and wearable sensors, present limitations		
				related to privacy, low-light conditions,		
				installation costs, and inconvenience. To		
				address these challenges, various techniques		
				have been proposed to use contactless		
				technology that leverages data from IoT		
				devices to develop a HAR framework.		
				In this project, the aim is for students to learn		
				how to collect, handle, and manage data from		
				IoT devices and develop AI algorithms to		
				analyse, classify, and predict various activity		
				behaviours. This will include data from single		
		4		-		
		4		and multiple IoT sources. The data will be		
				collected through a University of Glasgow-		
				owned IoT sensor network.		
				Objectives:		
				- AI Stage: Develop machine learning (ML)/		
				deep learning (DL) algorithms encompassing		
				classification and clustering techniques to		
				enable activity monitoring using data from IoT		
				sensors. (Students 1 and 2)		
				- System Integration, Data Analysis, and		
				Visualisation: Design a dashboard that		
				_		
				seamlessly integrates with the system,		
				enabling real-time visualisation of energy		
				consumption and the recognised activities		
1				e.g., occupancy, and activity types, e.g.,		
				cooking, watching TV. This phase will also		
				involve analysing the collected data to identify		
				activity patterns over a prolonged period of		
				time. (Students 3 and 4)		
35	Yao Sun		Encoder and	In this project, we will teach students how to	Computing nodes	[1] Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE
			Decoder Design	establish a semantic communication network		Communications Magazine, 2024.
			for Semantic	based on some basic deep learning		[2] B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on
1		3-4	Communication	algorithms. The students will learn the basic		Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018.
		5-4		concept of semantic communication as well		[3] H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication
				as wireless networking technology. Some		systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
1				coding skills will also be trained. Finally, the		[4] C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal,
				students will repeat an existing research work.		vol. 27, no. 3, pp. 379–423, 1948.
			1	stadente witt repout un oxisting resourch work.	I	voi. 27, no. 3, pp. 373-423, 1340.

				All the relevant papers, datasets and codes are from open sources.		
36	Yao Sun	3-4	Basic semantic communication network design		Computing nodes	 Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE Communications Magazine, 2024. B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018. H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021. C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
37	Yao Sun	3-4	Generative AI based Efficient Knowledge Construction for Semantic Communication	In this project, we would like to teach how to design an update policy for an intelligent semantic communication system. The students will learn the basic concept of semantic communication, and finally, repeat an existing research work. All the papers, datasets and codes are from open resources.	Computing nodes	 Yao Sun, Lan Zhang, Lingke Guo, et al. S-RAN: Semantic-aware Radio Access Networks. IEEE Communications Magazine, 2024. B. Güler, A. Yener, and A. Swami, "The semantic communication game," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 4, pp. 787–802, 2018. H. Xie, Z. Qin, G. Y. Li, and BH. Juang, "Deep learning enabled semantic communication systems," IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021. C. E. Shannon, "A mathematical theory of communication," The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
38	Lei Zhang	3	A Blockchain Platform for Data Sharing and Trading	The overall objective of the project is to create a collaborative environment based on blockchain technology for students to share their ideas and pieces of assignment/report (in particular for collaborative teamwork assessments) with others in a secure and privacy-preserving way while preventing plagiarism. Students are expected to learn basic programming skills by reproducing the results from existing research papers (e.g., BeSharing: A Copyright-aware Blockchain-enabled Knowledge Sharing Platform in BRAINS'22)	Cloud server	BeSharing: A Copyright-aware Blockchain-enabled Knowledge Sharing Platform in BRAINS'22
39	Lina Mohjazi	2-3	Internet of Mirrors for Connected Healthcare and Beauty Applications	The Internet-of-Mirrors (IoM) is an innovative interconnected ecosystem of smart mirrors under the umbrella of the Internet of Things (IoT) with integrated sensing and communication capabilities to enhance personalised services for assisted living. This research project will focus on developing a physical testbed to evaluate and validate key performance aspects of the IoM framework. Students will construct a hierarchical network to simulate a realistic IoM deployment with a specific focus on context aware task distribution. The project involves building a comprehensive monitoring system to track node capabilities and network quality, developing task	None	 [1] https://www.scifiniti.com/3006-4163/1/2024.0002 [2] https://www.sciencedirect.com/science/article/pii/S2542660524003561 [3] https://ieeexplore.ieee.org/abstract/document/10882135

generators that represent various workloads, and implementing a central coordinator to manage task distribution. Students will collect and analyse performance metrics across three dimensions: task metrics (completion time, success rate, queue time), node metrics (CPU, memory, and network utilisation), and system metrics (overall throughput, response time, and resource balance). This hands-on project will provide valuable insights into how context-aware algorithms perform in real hardware environments and how the IoM framework