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Abstract
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extend the traditional cost-efficiency models by decomposing inefficiency into
persistent and transient components. We propose a Bayesian nonparametric
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predictor-dependent clustering, enabling a flexible classification of banks into
distinct business models. Our method, based on the Logit Stick-Breaking Process
(LSBP), provides a data-driven way to capture the heterogeneity in bank strategies,
allowing for dynamic transitions between business models over time. This model
offers a significant advancement over existing parametric and kernel-based
approaches by combining the scalability of nonparametric methods with efficient
computational routines. We apply the model to a dataset of European banks and
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1 Introduction

Understanding the nature and evolution of bank business models (BBMs) is a fundamental

issue in banking research. The core challenge lies in identifying and modeling how banks’

strategic decisions on asset composition, funding sources, and income generation drive their

business models, especially in light of economic shocks and regulatory changes (DeYoung

and Rice, 2004a,b; DeYoung et al., 2004). While much of the banking literature has focused

on the classification of business models using cross-sectional data (Cerqueiro et al., 2011;

Zott et al., 2011), the dynamic nature of these models — particularly in response to shifts

in market conditions — remains underexplored. This paper contributes to the econometric

literature by proposing a novel dynamic framework for identifying BBMs, which accounts

for both persistent and transient inefficiencies within a performance measurement model

(Tsionas and Kumbhakar, 2014; Badunenko et al., 2021).

We extend existing approaches by incorporating a flexible Bayesian nonparametric

model, which allows for the endogenous identification of business models that evolve over

time. The proposed model adapts the classical stochastic frontier framework to

disentangle cost inefficiency into short-run and long-run components, with special

attention to unobserved bank heterogeneity (Greene, 2005; Kumbhakar et al., 2007). By

employing a mixture of distributions, we allow for the data-driven clustering of banks

based on their evolving characteristics (Custodio João et al., 2024). In contrast to

traditional clustering techniques, which often impose rigid assumptions about business

model transitions, our framework enables the seamless capture of these transitions as

banks adjust their strategies in response to both internal factors and external shocks,

such as financial crises and regulatory changes (Fahlenbrach et al., 2012; van Oordt and

Zhou, 2019).

Our starting point is the four-way error component stochastic frontier model of

Tsionas and Kumbhakar (2014) that is able to decompose inefficiency into persistent and

transient components. We extend this model into a Bayesian nonparametric framework,

which leverages an infinite mixture representation with predictor-dependent clustering,

enabling a flexible, data-driven classification of banks into distinct business models

(BBMs). To capture the complexity of bank behavior, we employ a Logit Stick-Breaking

Process (LSBP) (Ren et al., 2011), which introduces predictor-dependent mixture

weights. This allows us to model bank-specific heterogeneity and dynamic transitions

between BBMs over time. By extending existing nonparametric methods, our approach

offers a more structured and scalable solution to identifying BBMs compared to

traditional parametric and kernel-based methods (Dunson and Park, 2008; Dunson and
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Rodŕıguez, 2011), while maintaining computational efficiency through Pólya-gamma data

augmentation (Polson et al., 2013). We derive an efficient Markov chain Monte Carlo

(MCMC) algorithm for this model that is able to handle the large dimensions of our

empirical dataset. By means of synthetic data experiments, we establish the good

numerical properties of our new algorithm and estimator.

Our approach is particularly relevant for empirical studies of bank performance and

efficiency. First, we contribute to the literature on the econometric identification of BBMs

by offering a method that allows for the flexible classification of banks over time,

incorporating both the evolution of their business model and their efficiency (Tsionas and

Kumbhakar, 2014). Second, by introducing a Bayesian nonparametric framework with

predictor-dependent clustering, we overcome the limitations of standard clustering

methods that assume banks transition smoothly between models (Custodio João et al.,

2023; Kumbhakar et al., 2007). This innovation is especially important for understanding

the impact of policy changes and market conditions on bank performance, providing

richer insights into the long-term sustainability and short-term adjustments of banking

strategies (Assaf et al., 2019; Tsionas et al., 2023a). Third, in our empirical application to

493 European banks, we identify four distinct business model clusters over the period

2008–2022. The model reveals heterogeneity across banks in terms of their strategic

choices and operational efficiencies though one BBM, that focuses on traditional bank

asset and funding management, appears dominant. Notably, our model reveals that banks

respond to shocks, such as the global financial crisis, by switching between business

models to recover part of their losses in efficiency. These findings emphasize the

underlying dynamics of BBM and the role of strategic transitions in improving cost

efficiency in response to shocks (Badunenko and Kumbhakar, 2017; Wheelock and Wilson,

2000).

The remainder of the paper is structured as follows. Section 2 outlines the econometric

methodology of our proposed model, detailing the Bayesian nonparametric framework and

its application to BBM identification. Section 3 presents the results from a series of Monte

Carlo simulations, evaluating the performance of our model in terms of both parameter

estimation accuracy and cluster identification. Section 4 applies the model to a dataset

of European banks, providing an empirical analysis of the identified business models and

their efficiency dynamics over time. Finally, Section 5 concludes with a summary of the

main findings, policy implications, and suggestions for future research.
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2 Econometric Methodology

We adopt the production technology framework from Badunenko et al. (2021) and

Badunenko and Kumbhakar (2017), which uses cost functions to capture inefficiencies in

input use, aligning with standard banking studies that emphasize cost minimization. To

model the cost function in panel data, we use the four-way error component stochastic

frontier model by Tsionas and Kumbhakar (2014), which decomposes inefficiency into

persistent and transient components. The log-cost function for bank i = 1, ..., n at time

t = 1, ..., Ti is

yit = h(xit, β) + ai + η+i + u+it + vit, (1)

where yit = log (cit) is the logarithm of total cost, h(xit, β) is a translog function with

parameters β and covariates xit that consist of bank input prices and bank outputs.1 Here

η+i ≥ 0 and u+it ≥ 0 denote, respectively, persistent inefficiency that is consistent over time

and transient inefficiency that varies with time, while ai reflects unobserved bank-specific

differences, and vit represents traditional random noise. Therefore, the model is completed

by assuming ai ∼ N (0, σ2
a), η

+
i ∼ N+

(
0, σ2

η

)
, u+it ∼ N+ (0, σ2

u), vit ∼ N (0, σ2
v), where σ

2
i are

scalar variance parameters for i = a, η, u, v and N+ denotes the half-normal distribution.

Badunenko et al. (2021) tailor the model above to the problem of BBM identification,

by allowing the variances σ2
η and σ2

u to be functions of bank-specific characteristics. In

contrast, we propose an alternative method for BBM identification, following the literature

that employs mixture models to classify banks into different BBMs.

2.1 A smoothly mixing nonparametric panel data stochastic

frontier model

To model complex dependencies and heterogeneity in bank behavior, we extend the

stochastic frontier model in equations (1)–(3) using a Bayesian nonparametric framework.

Bayesian nonparametric methods allow model complexity to adapt to the data, using an

infinite mixture representation of the general form

f(y) =

∫
K (y; θ) p(dθ) ≡

∞∑
k=1

πkK (y; θ) ,

1In the empirical section we approximate the function h(•) using linear, quadratic, and cross-product
terms in xit. The precise form does not influence our analysis in this section, provided that the function
remains linear in the parameters β. This linearity assumption is not restrictive, as it encompasses the
polynomial (quadratic) approximation we adopt in our empirical exercise, as well as highly nonlinear
approximations such as splines and Gaussian processes.
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where K(y; θ) is a parametric kernel and p is a random probability measure and πk a

discrete probability. We extend this framework by employing an infinite mixture

representation with predictor-dependent weights, enabling a flexible clustering of banks

based on their characteristics. To address dependencies on covariates, we adopt the Logit

Stick-Breaking Process (LSBP) proposed by Ren et al. (2011), which introduces

predictor-dependent mixture weights πk(zit), with zit a q × 1 vector, providing a

structured and data-driven model for bank-specific behavior.

In place of the parametric kernel K(y; θ) we use the stochastic frontier model of Tsionas

and Kumbhakar (2014) introduced previously. Therefore, the proposed mixture model is

expressed as:

yit =
∞∑
k=1

πk (zit)
[
h (xit, βk) + ai + η+i + u+it,k + vit,k

]
, (2)

where k = 1, 2, 3, . . . indexes the mixture components, πk(zit) = Pr(Gi = k | zit) are

predictor-dependent probabilities, and Gi ∈ N denotes the cluster assignment. Variances

of the noise components uit,k and vit,k are cluster-specific, while the random effects ai and

η+i vary only by unit i:

ai ∼ N
(
0, σ2

a

)
, (3a)

η+i ∼ N+
(
0, σ2

η

)
, (3b)

u+it,k ∼ N+
(
0, σ2

u,k

)
, (3c)

vit,k ∼ N
(
0, σ2

v,k

)
. (3d)

The translog function h(xit, βk) has cluster-specific parameters βk.

The LSBP defines the weights πk(zit) using a stick-breaking process:

πk (zit) = νk (zit)
k−1∏
l=1

[1− νl (zit)] , (4)

where the probabilities νk(z) depend on the predictors through a logit function:

νk (zit) =
exp(z′itαk)

1 + exp(z′itαk)
. (5)

The parametrization in equations (4)-(5) is referred to as a continuation ratio model

(Agresti, 2010). It also relates to the smoothly mixing regressions introduced by Geweke

and Keane (2007) in the context of finite mixture models. The weights νk(zit) are

interpreted as the probability of selecting component k given that the k − 1 earlier
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components were not selected. This can be seen by noting that νk can be written as

νk(zit) = πk(zit)

1−
∑k−1

l=1 πl(zit)
= Pr(Gi=k|zit)

Pr(Gi>k−1|zit) . As we show in the next subsection, the

continuation-ratio approach simplifies Bayesian inference by transforming the mixture

allocation problem into a series of independent binary logistic regressions, leveraging

Pólya-gamma data augmentation for computational efficiency (Polson et al., 2013). Rigon

and Durante (2021) illustrate how the logit stick-breaking process enables scalable

posterior computations across multiple algorithms, such as Gibbs sampling,

expectation-maximization, and variational Bayes, while preserving the flexibility of

Bayesian nonparametric models; see also Schröder (2024) for an application of these ideas

to inflation modeling.

Compared to existing approaches, such as the kernel stick-breaking process (Dunson

and Park, 2008) and the probit stick-breaking process (Dunson and Rodŕıguez, 2011), the

LSBP introduces predictor-dependent clustering while benefiting from efficient

computational routines. Theoretical results in Ghosal et al. (1999) and Tokdar (2006)

ensure that the Dirichlet process model in equation (2) can consistently approximate the

true data density. Although the proposed model is grounded in nonparametric infinite

mixtures, it can be practically estimated with a finite number of clusters, K. In fact, the

truncation can involve as few as two clusters, offering remarkable flexibility.2 This

adaptability makes the model particularly suitable for capturing heterogeneity in panel

data applications, such as those encountered in banking. The mixture representation

allows to follow a large literature on identifying BBMs using mixtures of distributions; see

Lucas et al. (2019) and Custodio João et al. (2023). At the same time, our model is

nonparametric in nature, aligning with the recent state of the art in nonparametric BBM

estimation (Custodio João et al., 2024) as well as nonparametric stochastic frontier

analysis (Tsionas et al., 2023b; Kumbhakar et al., 2007).

2.2 Likelihood and priors

The likelihood of the proposed model is given by:

p
(
y | x,β,a,η+,u+,σ2

v , z,α
)

=
n∏

i=1

T∏
t=1

∞∑
k=1

πk(zit)N
(
yit;h(xit, βk) + ai + η+i + u+it,k, σ

2
v,k

)
,

2For a discussion of cluster truncation, see the discussion in subsection 2.3. The estimation algorithm
we propose is capable of handling even a single cluster, effectively fully nesting the model of Tsionas and
Kumbhakar (2014) as a special case.
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where the bold symbols (y, x, β, a, η+, u+, σ2
v , z, α) represent collections, into vectors

or matrices of conformable dimensions, of the respective parameters across all dimensions

i, t, and k.

While this likelihood appears similar to a Gaussian mixture model, it is fundamentally

different. As demonstrated by Tsionas and Kumbhakar (2014) for their simpler model (a

special case of the above equation with k = 1), the convolution of the four latent

components—comprising truncated normal and normal distributions—results in a

multivariate skew-normal likelihood. Thus, our proposed specification extends the

Tsionas and Kumbhakar (2014) framework into a flexible mixture of skewed distributions.

It offers a structured perspective on production efficiency, distinguishing itself from the

more generic skewed mixture specification proposed by Custodio João et al. (2023).

We next specify parametric prior distributions for all unknown parameters of interest.

The prior for πk(zit) is given by the LSBP of equations (4)-(5).3 Since we do not know

a priori which banking variables zit are most suitable for identifying different BBMs, we

adopt a Bayesian variable selection approach. Specifically, the logit coefficients αk follow a

continuous spike-and-slab prior (George and McCulloch, 1993) of the form

αj,k | γj,k ∼ (1− γj,k)N
(
0, τ 20

)
+ γj,kN

(
0, τ 21

)
, (6)

γj,k ∼ Bernoulli(0.5), ∀k , j = 1, ..., q, (7)

where γj,k are binary variables indicating whether αj,k is restricted (γj,k = 0) or not (γj,k =

1). When αj,k is restricted (unrestricted), it has a zero-mean Gaussian prior with small

(large) variance τ 20 (τ 21 ). Narisetty and He (2014) argue that fixing τ 20 and τ 21 to overly small

and large values, respectively, can result in variable selection inconsistency. Following their

recommendations, we set τ 20 = 1
nT/K

and τ 21 =
τ20

t5
(√

2.1 log(q+1)
) , where t5(•) is the p.d.f. of

the Student-t distribution with five degrees of freedom. The prior probability for all γj, k is

set to 0.5, which is a standard uniform choice in Bayesian inference, implying that a priori,

half of the covariates zit are expected to be included in each cluster’s logit specification. The

coefficients of the stochastic frontier model have fairly noninformative prior distributions,

3Note that the logit stick-breaking process can be interpreted either as a multi-level model for πk(zit),
forming part of the likelihood, or equivalently as a hierarchical prior in a Bayesian framework. These two
terminologies are interchangeable, and here we choose to refer to it as the “LSBP prior” for the parameter
πk(zit).
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following closely Tsionas and Kumbhakar (2014). These take the following form

βk ∼ N
(
0, A−1

)
, k = 1, 2, ..., (8)

Qu

σu,k
∼ χ2 (Nu) ,

Qv

σv,k
∼ χ2 (Nv) , (9)

Qa

σa
∼ χ2 (Na) ,

Qη

ση
∼ χ2 (Nη) , (10)

where A−1 = 10−4, Qκ = 10−4 and Nκ = 1, for κ = a, η, v, u, for all mixture components k.

2.3 Posterior Sampling

Given the hierarchical structure of the proposed model, we develop an efficient Markov chain

Monte Carlo (MCMC) algorithm that sequentially samples from the conditional posterior

distributions. Specifically, conditional on the parameters of the stochastic frontier kernel,

we sample cluster assignments and the stick-breaking coefficients αk. To circumvent the

challenges of sampling from an infinite-dimensional parameter space, we truncate k to

a maximum of K clusters. According to Theorem 1 in Rigon and Durante (2021), the

estimated density under such truncation converges exponentially to the marginal density

estimated under the representation using infinite clusters, that is, the representation in

(2). This result implies that K does not need to be excessively large to achieve accurate

nonparametric estimation of the underlying data density. Empirically, we set K to a

“large enough value” based on the dataset at hand, and the algorithm is able to visit in a

sequential manner only the required number of clusters, leaving redundant clusters empty.

The simulation exercise of the next Section illustrates numerically this point.

For a given number of components K we can sample cluster assignments Git randomly

using probabilities defined in (4). Conditional on the cluster assignment indicators, latent

variables ωitk are introduced, simplifying the conditional posterior distributions. The

conditional posterior distribution of the latent variable ωitk is

ωitk | • ∼ PG(1, ψitk) (11)

where | • denotes conditioning on data and other parameters, and PG(1, ψitk) denotes a

Pólya-Gamma distribution4 with parameters 1 and ψitk, the linear predictor associated with

4The Pólya-Gamma distribution is a continuous probability distribution with the probability density
function given by:

f(w; b, c) =
1

π

∞∑
k=0

gk(
k − 1

2

)2
+
(

c
2π

)2
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νk(zit). The logistic regression coefficients αk have a conditional posterior distribution:

αk | • ∼ N(mα
k , V

α
k ) (12)

where the posterior mean mα
k and variance V α

k are updated based on the observed data,

the continuous spike and slab prior, and the augmented variables ωitk. Conditional on αk

the variable selection indicator γk in prior (6)-(7) is of the form

γk | • ∼ Bernoulli(πγ), (13)

with certain posterior hyperparameter πγ.

Next, conditional on the cluster assignments and cluster probabilities, we derive the

conditional posteriors of the stochastic frontier kernel, adapting the efficient sampling

scheme from Tsionas and Kumbhakar (2014), see also Kumbhakar and Tsionas (2005).

Given the model’s high latency with four unobserved components, the authors propose a

Gibbs sampler that avoids naive sequential updates of parameters. Instead, they sample

the joint parameter δi = ai + η+i , followed by sampling η+i conditional on the joint

component ξit = ai + vit. Subsequently, ai is computed as the difference between δi and

η+i , reducing correlations in the resulting parameter samples. The conditional posterior of

δi is non-conventional, and the authors use an efficient accept/reject algorithm with

Gaussian proposals. Other parameters have conditional posteriors that have fairly

standard forms: truncated normal for η+ and v+it,k, and χ
2 for variance parameters which

are functionally equivalent to more conventional inverse gamma priors. Under the

assumption that the translog function h (xit, βk) is linear in the parameters (as noted in

footnote 1), the conditional posterior distribution of βk follows a normal distribution,

with hyperparameters derived in standard analytical forms.

The proposed Gibbs sampler proceeds by sequentially sampling each parameter one at

a time, conditional on all other parameters remaining fixed. The exact steps are provided

in Algorithm 1 below and detailed formulas are given in the Appendix.

where gk ∼ Gamma(b, 1) are independent random variables following a Gamma distribution with shape
parameter b and scale parameter 1.
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Algorithm 1 Logit Stick Breaking Process Stochastic Frontier Analysis panel data model

1: Initialize all parameters.

2: Update cluster assignments Git from multinomial.

3: Update latent variables ωitk using Pólya-Gamma augmentation.

4: Update stick-breaking coefficients αk from normal.

5: Update variable selection indicators γk from Bernoulli.

6: Update regression coefficients βk from normal.

7: Update bank-specific heterogeneity δi using accept/reject using a normal proposal.

8: Update persistent inefficiency ηi from truncated normal with positive support.

9: Update transient inefficiency uit,k from truncated normal with positive support.

10: Update variances σ2
a, σ

2
η, σ

2
u,k and σ2

v,k from chi-square.

These sampling steps are fairly standard and easy to implement, resulting in a

numerically stable MCMC algorithm that is also reasonably fast. Sampling from the

Pólya-Gamma distribution can be efficiently achieved using Algorithm 6 in Windle

(2013), which builds upon the work of Devroye (2009). Sampling from truncated normal

conditional posteriors can also be implemented with high efficiency using the algorithm

proposed by Botev (2017). The final algorithm cycles efficiently through the nine steps,

enabling fast estimation of a complex model, even when thousands of panel data

observations are available, as is the case with our bank data.

3 Simulation Study

We examine the ability of our model and Bayesian estimation algorithm to produce

numerically accurate estimates and correctly identify the true number of clusters. The

data generating process (DGP) for generating synthetic data is specified as follows:

xit ∼ N(0, 1), h(xit, βk) = xitβk, zit ∼ N(0, 1), (14)

α = [1, 0.5, 0.8], β = [1.8, 1.2, 0.6, 2.5], (15)

σu = [0.1, 0.08, 0.05, 0.14], σv = [0.1, 0.15, 0.22, 0.12], (16)

σa = 0.2, ση = 0.5. (17)

We simulate models where the true number of clusters varies from K = 2 to K = 4.

Depending on the specified number of clusters, the model is generated using the first K

elements of all cluster-specific parameters, except for α, which requires K − 1 elements.

For instance, for K = 3, we set α = [1, 0.5] and β = [1.8, 1.2, 0.6], and apply similar
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adjustments for all other parameters based on the true number of clusters in the DGP.

We further explore models with sample sizes n = [100, 200, 500] and time periods T =

[5, 10, 15], considering all possible combinations of these values for n and T . We generate

nMC = 100 datasets and estimate each one using the proposed Gibbs sampler algorithm.

A total of 110, 000 posterior samples are drawn, with the first 10, 000 discarded as burn-

in. Every 100th sample is retained, resulting in 1, 000 effective posterior samples used for

inference.

3.1 Numerical accuracy

Before presenting numerical accuracy statistics across all values of n, T , and K, we first

examine parameter estimates in the case with n = 200, T = 10, and K = 4. The chosen

values for n and T are intermediate among the considered options, while selecting the

largest number of clusters provides a more informative assessment of numerical accuracy.

Across the 100 simulated datasets, the average number of observations in clusters one,

two, three, and four are 394, 170, 204, and 1232, respectively, making cluster four the

dominant cluster. When estimating clusters using our algorithm, these clusters are

unlabeled, so we first reorder the estimated clusters to correspond to the generated ones.

We achieve this by specifying a “cost matrix,” which measures the Euclidean distance

(quadratic loss) between the conditional mean of the estimated model and the conditional

mean of the true model for each cluster. The clusters are then reassigned to their correct

labels using the Hungarian algorithm (Kuhn, 1955).

Figure 1 shows the confusion matrix comparing true and estimated cluster assignments,

averaged across the 100 Monte Carlo iterations. The rows represent the true cluster labels

in the data generating process (DGP), while the columns show the estimated labels. Each

cell indicates the count of observations assigned to a given cluster. Blank white spaces

denote cases with zero observations. Therefore, the diagonal cells (highlighted in blue)

represent the number of correct assignments for each cluster. For example, for cluster four,

1197 observations were correctly assigned out of a total of 1232. Off-diagonal cells (shown

in pink) represent misclassifications. We observe that the total number of misclassified

observations is 196, meaning that 1804 observations, or 90.2% of the data, were classified

correctly. In general, for our specified DGP, misclassification rates range from 9% to 10.5%

of the observations, which is a numerically good result. As a comparison, when using

a naive clustering algorithm, in particular, the hierarchical clustering method of Ward

(1955), we find misclassifications in over 70% of the observations. Most misclassifications

in our algorithm occur when observations that belong to clusters one, two, and three are
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mistakenly assigned to cluster four, as evidenced by the larger counts in the last column of

Figure 1. This is primarily due to cluster four being generated with the largest number of

observations.

Figure 1: Confusion matrix comparing true and estimated cluster assignments:
The rows represent the true cluster labels, while the columns correspond to the estimated
cluster labels after realignment using the Hungarian algorithm. The values indicate the
number of observations assigned to each cluster, with darker shades representing higher
counts. Perfect alignment would result in a diagonal structure, where most observations
are concentrated along the main diagonal. Results are for DGP with n = 200, T = 10,
K = 4, averaged over 100 simulated datasets.

Table 1 presents the posterior means of the parameters along with their posterior

standard errors (in parentheses) for each of the four clusters. These are averaged over all

Monte Carlo iterations to ensure that the results reflect the general performance of the

model across different simulated datasets. The estimated parameters for each cluster are

generally very close to the true values specified in the DGP, especially for the β values

and the σa and ση parameters. The small discrepancies between the true and estimated

values can be attributed to sampling variability, especially given the relatively small

sample size of n=200 and T=10 time periods in the simulation. However, the precision of

the estimates, as indicated by the posterior standard errors, suggests that the model is

working effectively to recover the true parameter values. The somewhat higher variability

in the estimates for σu and σv across clusters could be explained by the inherent

complexity of modeling heterogeneity across multiple clusters and the corresponding
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uncertainty in estimating cluster-specific variances.

Overall, these results indicate that the Bayesian estimation method is robust and

performs well in accurately estimating the parameters in the DGP, even when the true

number of clusters is correctly identified as K=4. The estimates are both numerically

accurate and precise, validating the effectiveness of the model and the Bayesian

estimation algorithm for the given Monte Carlo simulation setup.

Table 1: Estimated posterior means and posterior standard errors (in parentheses) for each
parameter for each cluster, averaged over all Monte Carlo iterations

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

β
1.7990

(0.0038)

1.2018

(0.0176)

0.6121

(0.0134)

2.4858

(0.0776)

σa
0.1770

(0.0359)

ση
0.4889

(0.0264)

σu
0.0921

(0.0425)

0.0735

(0.0552)

0.0530

(0.0344)

0.1244

(0.0543)

σv
0.1067

(0.0099)

0.0998

(0.0270)

0.1530

(0.0387)

0.1222

(0.0505)

We next move to compare numerical accuracy of the algorithm across different

configurations of n, T and K. Table 2 shows the Mean Squared Error (MSE) for the

estimation of key parameters in a model with varying sample sizes (n), time periods (T ),

and the number of clusters (K). The MSE values in the table represent the average error

over these 100 datasets and it is calculated as follows:

MSE(θ̂) =
1

nMC

nMC∑
i=1

(θ̂i − θ)2

where θ̂i is the estimate of a given parameter θ from the i-th Monte Carlo dataset, and

θ is the true value of the parameter. The MSE values in the table are averaged over the

key parameters β, σa, ση, σu, and σv. Specifically, the MSE for each configuration of n, T ,

and K is computed as:

Average MSE =
1

5

(
MSE(β̂) + MSE(σ̂a) + MSE(σ̂η) + MSE(σ̂u) + MSE(σ̂v)

)
12



This averaging procedure provides an overall measure of estimation accuracy across all

the key parameters. The table displays the average MSE for different values of n, T , and K,

with each entry corresponding to the computed MSE for a particular configuration of these

factors. The results reflect how well the model parameters are estimated under varying

conditions of sample size, time period length, and cluster number.

Table 2: Mean square error (MSE) for different values of n, T , and K.

n T K Cluster 1 Cluster 2 Cluster 3 Cluster 4

100 5 2 0.0218 0.0182

100 10 2 0.0044 0.011

100 15 2 0.004 0.0107

200 5 2 0.0411 0.0385

200 10 2 0.0118 0.0176

200 15 2 0.0052 0.0096

500 5 2 0.0389 0.0374

500 10 2 0.0127 0.021

500 15 2 0.0072 0.0129

100 5 3 0.0436 0.0548 0.0588

100 10 3 0.0035 0.0345 0.0313

100 15 3 0.0051 0.0108 0.0155

200 5 3 0.037 0.0417 0.0229

200 10 3 0.0048 0.0047 0.0053

200 15 3 0.0021 0.0054 0.0067

500 5 3 0.0453 0.0902 0.0614

500 10 3 0.0071 0.0401 0.027

500 15 3 0.0054 0.0101 0.0122

100 5 4 0.0215 0.0304 0.0404 0.038

100 10 4 0.0061 0.0129 0.0181 0.0089

100 15 4 0.0065 0.0152 0.0166 0.0125

200 5 4 0.0609 0.1821 0.0197 0.0971

200 10 4 0.006 0.0052 0.0056 0.0152

200 15 4 0.002 0.0062 0.0074 0.0039

500 5 4 0.0464 0.0599 0.0373 0.0457

500 10 4 0.0094 0.0415 0.0353 0.0121

500 15 4 0.0041 0.0346 0.0228 0.0104
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The results in Table 2 suggest that as the sample size increases, the MSE generally

decreases across all values of K and T . Specifically, for smaller sample sizes (n = 100), the

MSE tends to be higher, particularly for models with more clusters. For instance, when

K = 4, the MSE is noticeably larger compared to when K = 2 or K = 3. As the number of

time periods increases, the MSE decreases for most configurations, indicating that having

more data over time helps improve estimation accuracy.

For the medium sample size (n = 200), the MSE decreases with increasing T , with the

most noticeable improvement occurring when T moves from 5 to 15. For larger sample sizes

(n = 500), the MSE continues to decrease with increasing T , though some configurations

with more clusters (e.g., K = 3 and K = 4) still exhibit higher variability, especially at

smaller values of T .

Overall, increasing the sample size and the number of time periods improves the

accuracy of the parameter estimates, with more clusters leading to higher MSE at smaller

sample sizes and fewer time periods.

3.2 Cluster allocation

We investigate our algorithm’s ability to assign the correct number of clusters to the data.

Since the cluster allocation in the LSBP is sequential, we can impose a large number of

potential clusters and allow the algorithm to only visit the necessary ones. This

approach—overfitting the number of clusters while restricting the algorithm to the

relevant ones—was also used by Bauwens et al. (2015) in the context of Markov Switching

and structural break models, where they overfit the number of breaks and let the

algorithm select the appropriate ones.

Table 3 below shows the average estimated number of clusters across all Monte Carlo

iterations for various sample sizes (n) and time periods (T ). In this experiment, the true

number of clusters in the data generation process (DGP) is K = 2, but the model was

estimated with Kmax = 20 clusters.5 Although we overfit the number of clusters, the

algorithm does not always visit all clusters, as it follows a sequential process and may not

reach the maximum number of clusters.

The results indicate that as both the sample size n and the number of time periods

T increase, the algorithm tends to overfit the number of clusters. However, given the

maximum number of clusters imposed (K = 20), the performance of the algorithm is still

satisfactory as it avoids computing multiple models with different numbers of clusters.

5For computational reasons, we do not repeat this exercise for true number of clusters being K = 3 and
K = 4, as in the previous part of this section.
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Table 3: Average Estimated Number of Clusters across Monte Carlo Iterations, when true
number is K = 2 and maximum possible number of clusters is 20

n T # of Clusters
100 5 2.2
100 10 2.5
100 15 2.5
200 5 2.3
200 10 2.7
200 15 3
500 5 3.5
500 10 3.8
500 15 4.3

In practice, this method allows for the estimation of a model with many clusters,

without the need to calculate computationally expensive marginal likelihoods for models

with different numbers of clusters. This strategy is particularly beneficial when one does

not know the exact number of clusters beforehand. The results suggest that this approach

is valid as long as the number of clusters is not excessively large. For the empirical

analysis, we impose a conservative number of clusters (K = 4) as our benchmark model,

based on our experience with the dataset. Additionally, in the online supplement, we will

estimate models with K = 10 clusters and compare the results.

4 Empirical Results

4.1 Data and technology specification

Our sample consists of n = 493 European commercial, cooperative, and savings banks

observed annually over the period 2008–2022, implying T = 15. The resulting balanced

panel consists of 7,395 bank-year observations. BankFocus is the source of balance sheet

data of annual frequency.

Identification of BBMs is via the variables we denote as zit in our model specification.

We follow Badunenko et al. (2021), Curi et al. (2015), and Elsas et al. (2010) and opt for

three key dimensions: (i) asset composition (or lending and investment in Badunenko et al.,

2021), (ii) sources of funding and their quality, and (iii) sources of income. However, rather

than using some aggregate measures of those dimensions, we employ all their available

determinants. To this end, we opt for loans, loans to banks, derivatives, securities, non-

earning assets, and fixed assets that determines the asset composition dimension of BBM.

The funding quality dimension is based on deposits, bank deposits, short-term funding,
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derivatives, long-term funding, reserves, and equity. Lastly, the income mix dimension

focuses on interest income and non-interest income. In total, we assemble a comprehensive

thirteen variables that would provide underlying information to identify BBM.

So far, we have left specification of the translog function h (xit, β) unspecified. We do

that here, so we also specify the input and other variables denoted as xit. The technology of

bank i (i = 1, . . . , n) observed over time period t (t = 1, . . . , T ) is specified by the following

translog cost function

h (xit, β) = β0 +
2∑

j=1

βY
j log Yj,it +

3∑
m=1

βW
m logWm,it

+
1

2

2∑
j=1

2∑
l=1

βY Y
jl log Yj,it log Yl,it +

1

2

3∑
m=1

3∑
n=1

βWW
mn logWm,it logWn,it

+
2∑

j=1

3∑
m=1

βYW
jm log Yj,it logWm,it

+
2∑

j=1

βδ
j log Yj,it × t+

3∑
m=1

βθ
m logWm,it × t

+ βτ t+ βτ2t
2.

(18)

The outputs Y1 and Y2 represent loans and other earning assets, respectively, while the

inputs W1, W2, and W3 correspond to the prices of labor, physical capital, and financial

capital. The first-order terms βY
j and βW

m capture the direct effects of outputs and input

prices on costs. The quadratic terms βY Y
jl and βWW

mn account for nonlinear effects and

possible economies of scale, while the interaction terms βYW
jm capture how input prices and

outputs jointly affect costs. The terms βδ
j and βθ

m allow for time-varying effects of outputs

and input prices, while the linear and quadratic time trend terms βτ and βτ2 capture

technological changes in cost efficiency. This translog cost function specification allows for

a flexible representation of banking cost structures, accommodating nonlinear relationships,

interactions, and technological progress over time.

4.2 Cluster selection

In the previous section, we established that our model accommodates a large maximum

number of clusters. However, the algorithm only sequentially visits the most probable

clusters, leaving the remaining ones empty. While this approach is computationally

efficient, it comes at the cost of increased parameter uncertainty due to the estimation of

an unnecessarily large number of clusters.Based on prior experience with the data, we
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expect only a small number of clusters. For instance, Custodio João et al. (2023) identify

six clusters using quarterly data and a different clustering methodology, but this number

may be too high for our annual dataset.

To assess the appropriate number of clusters, we estimate models with three, four, and

ten clusters. Table 4 presents the average number of banks per cluster over the T = 15

years in our sample, under the cases K = 3, K = 4 and K = 10. A clear pattern emerges,

as all models indicate a dominant cluster with over 300 banks. In the ten-cluster model,

three clusters contain zero or one bank, and five clusters have fewer than nine banks. This

suggests that, depending on how clusters are defined in terms of membership size, the

ten-cluster model effectively reduces to five or fewer meaningful clusters.

Both the three- and four-cluster models result in clusters with a sufficient number of

banks. However, in the four-cluster model (K = 4), Cluster 2 is relatively small, averaging

only 12 banks. Given these findings, we proceed with presenting results for the four-cluster

model in the main text while providing results for the three-cluster model in the online

supplement. Importantly, key estimates of permanent and transient inefficiencies remain

largely consistent across the three- and four-cluster models.

Table 4: Cluster membership for models with K = 3, 4, and 10

K = 3 K = 4 K = 10

Cluster 1 80 64 3

Cluster 2 339 12 9

Cluster 3 74 316 43

Cluster 4 101 1

Cluster 5 302

Cluster 6 1

Cluster 7 22

Cluster 8 81

Cluster 9 0

Cluster 10 31

Total 493 493 493
Notes: Entries are the average number of banks per cluster over T = 15 years. Clusters are unlabelled,

meaning that, for example, Cluster 2 in the K = 3 model does not necessarily correspond to Cluster 2 in

the K = 4 or K = 10 models.

Adopting the four cluster model as the benchmark, Figure 2 shows the number of banks

in each of the four clusters at each point in time. The figure shows the number of banks

assigned to each of the four clusters over time, based on the four-cluster model. The x-axis
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represents the years from 2008 to 2022, while the y-axis indicates the number of banks

in each cluster. Cluster 1 experiences a decline in membership from over 100 banks in

2008 to lower levels in the mid-2010s, followed by a rebound in 2018 and 2022, suggesting

banks may transition into this cluster under specific economic conditions. Cluster 2 is

marked by a sharp spike in 2011, with membership exceeding 35 banks, followed by a

period of lower and fluctuating levels until another increase in 2022, potentially reflecting

changes in banking characteristics during financial stress or regulatory shifts. Cluster 3 is

the largest, consistently containing over 300 banks for most of the period, growing from

2008 to 2013–2014 before stabilizing and experiencing a modest decline in 2022. Cluster 4

remains relatively stable, with membership ranging between 100 and 120 banks, though it

dips in the mid-2010s before rising sharply in 2021 and 2022, suggesting that banks may

transition into this cluster in response to economic or regulatory changes.

Figure 2: Cluster transition and popularity
This figure shows the number of banks allocated to each of the four clusters at each point in
time. Bank i is assigned to cluster k at time t for which the cluster probability is maximal.

4.3 Efficiency measures

We report estimates of efficiency measures in Figure 3. Efficiencies are defined as the

transformations exp
(
−u+it

)
and exp

(
−η+it

)
of transient and persistent inefficiency

components, respectively. Transient efficiency takes higher values than the persistent

efficiency, as expected, since banks tend to become more efficient in the long run. The
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distribution of transient efficiency has a more complex shape as it is a mixture of four

components. This is a desirable feature of our analysis, as it provides crucial insights for

identifying the underlying BBM at the bank level. On average, banks exhibit a high level

of efficiency, with a mean persistent cost efficiency of approximately 0.9189. The lowest

estimate, around 0.876, suggests minimal long-term cost efficiency among European

banks, reflecting a uniform and well-functioning banking environment in European

countries. These results are consistent with Badunenko et al. (2021), Tsionas and

Kumbhakar (2014), and Tsionas et al. (2023b). Figure 3 also illustrates the distribution

of transient (short-run) cost efficiency, which is lower than persistent efficiency, with a

mean of approximately 0.8778. However, the noticeable left tail suggests that some banks

exhibit significantly lower transient efficiency, highlighting opportunities for substantial

short-term efficiency gains if they switch BBM. This transient inefficiency warrants

further investigation; panel (c) reports its values over time. In the aftermath of the global

financial crisis, there is a clear peak in transient inefficiency (low efficiency). Since then,

efficiency has exhibited a rollercoaster-like pattern, emphasizing the need for continued

monitoring.

As we show in Figure S.2. of the online supplement, these estimates of permanent

and transitory efficiencies are fairly similar to the ones obtained from the model with

three clusters. However, as shown in Figure S.1. there are noticeable differences with the

estimates of transient efficiency in the model with K = 1 clusters, which is the exact model

in Tsionas and Kumbhakar (2014). This is to be expected, as in this model transient

efficiency is not a mixture of cluster-specific distributions.
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Figure 3: Efficiency Decomposition in the LSBP Stochastic Frontier Model
This figure presents the decomposition of efficiency into permanent and transitory
components. The top left panel displays the histogram of permanent efficiency, illustrating
the distribution of long-term efficiency levels across banks. The bottom panel shows the
histogram of transient efficiency, capturing the short-term fluctuations in efficiency across
all banks and time periods. The right panel, spanning the right half of the figure, presents
a 3D histogram of transient efficiencies, visualizing how these vary across banks and years.

To further understand how aggregate transient efficiency is a mixture of transient

efficiency in the four clusters, Figure 4 displays the evolution of transitory efficiency

estimates for each of the four clusters over time. The x-axis represents time from 2008

onwards, while the y-axis captures the efficiency scale, with the third dimension

illustrating the distribution of efficiency levels across banks in each cluster. Cluster 1

exhibits a significant drop in efficiency during the period surrounding the global financial

crisis, with fluctuations in subsequent years. Cluster 2 experiences the most pronounced

decline in efficiency around the 2011 eurozone debt crisis, indicating that banks in this

group were particularly affected by the sovereign debt turmoil. Cluster 3, which contains

the largest number of banks, shows a more stable evolution of efficiency, though some

periods of deterioration are visible. Cluster 4 demonstrates variability over time, with

efficiency levels experiencing noticeable peaks and troughs, potentially reflecting shifts in

market conditions or regulatory environments. The decomposition into clusters reveals

that overall transitory efficiency is shaped by diverse patterns across bank groups, rather

than a uniform trend.

Figure S.1 in the online supplement shows similar estimates of permanent and
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transient efficiencies in the model with K = 1 clusters, which is the exact model in

Tsionas and Kumbhakar (2014). As expected, there are noticeable differences in the

estimates of transient efficiency in the K = 1 model, where this model

Figure 4: Transient efficiency per period and per cluster
The figure shows 3D histogram of transient efficiencies for each of the four clusters over the
T = 15 years in the sample.

4.4 Cluster allocation and transitions

We use all available determinants of the three main bank dimensions (asset composition,

funding quality, and income mix) to model the cluster allocation probabilities. These

determinants, collected in the vector zit, impact upon the likelihood of belonging to a

specific cluster. The inclusion of a spike-and-slab prior on α allows the model to select

only the most relevant variables for clustering, reducing dimensionality and improving

interpretability. We do so by calculating posterior inclusion probabilities (PIPs) which

are calculated as the posterior mean of the variable indicators γj,k, for j = 1, ..., q and

k = 1, ..., K, that is, PIPj,k = E (p (γj,k|•)). Following Barbieri and Berger (2004) we label

as important those variables that have PIP > 0.5, also referred to as the median probability

model. Table 5 reports zit variables selected in the Logit Stick-Breaking Process for each

cluster, revealing the underlying BBM. There are four identified BBMs, which we can label

as follows:

1. Cluster 1 consists mostly of banks with an emphasis on the asset dimension and
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non-interest income.

2. Cluster 2 consists mostly of banks with an emphasis on the funding dimension and

interest income.

3. Cluster 3 consists mostly of banks with an emphasis on both the asset and funding

dimensions but without the income mix dimension.

4. Cluster 4 consists mostly of banks with an emphasis on the asset dimension and also

derivatives from the funding quality dimension.

The four clusters identified in this study exhibit distinct characteristics aligned with

their determinants. Cluster 1 is predominantly defined by banks that focus on asset

composition, with their main income derived from non-interest sources. The reliance on

non-interest income provides a diversified source of revenue beyond traditional

interest-bearing assets like loans and securities. This strategy aligns with the need for

banks to reduce their reliance on volatile interest rate environments and develop

alternative sources of revenue. The inclusion of loans, securities, and derivatives in the

asset composition reflects a risk-management strategy, enabling these banks to hedge

against adverse market conditions, while the focus on non-interest income may indicate a

shift towards fee-based services such as investment banking or wealth management.

In contrast, Cluster 2 places a greater emphasis on the funding dimension, with banks

primarily generating interest income. Banks operating under this model prioritize

stability and security in their funding sources, as indicated by the heavy reliance on

deposits, short-term funding, and equity. This model is indicative of a more conservative

banking approach where interest income from loans and other interest-bearing assets

remains a primary revenue source. Thus, Cluster 2 reflects banks that focus on

sustainable and low-risk funding sources while still capturing the profitability from

interest-bearing activities. The preference for equity and deposits as key funding sources

suggests a low-risk appetite, which is often associated with financial stability. As shown in

Figure 2, there was a spike in bank transitions to Cluster 2 in 2011, following the global

financial crisis. This shift reflected a move toward traditional interest-bearing activities

over securitization. However, banks in Cluster 2 experienced a decline in efficiency in

2012, indicating that their strategic decision to switch BBM came at the cost of reduced

efficiency. This triggered a dynamic process of further re-switching between BBMs.

Cluster 3 combines aspects of Cluster 1 and Cluster 2, focusing on both asset and

funding dimensions but excluding the income mix, thereby suggesting a mixture type of

BBM that relies on balance sheet strength and funding structures, like loans and deposits.
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This cluster is the dominant one, as depicted by Figure 3, panel C. This mixture bank

model suggests an underlying adaptive bank managerial strategy, where banks may be

adjusting their business models in response to evolving market conditions and shocks.

This could indicate that banks in the aftermath of a shock, like the global financial crisis,

were in a phase of rebalancing and restructuring, focusing on the structural elements of

their operations, such as asset and funding composition, without diversifying their income

sources. This model may reflect a more cautious, traditional banking approach, therefore,

as banks adjusted primarily their risk profiles and operational strategies through their

assets and funding, while alternative income streams were not a priority.

Lastly, Cluster 4 is characterized by a focus on asset composition, with derivatives from

the funding quality dimension playing a notable role. Derivatives, in this case, are versatile

instruments, serving both as an asset management tool and a mechanism for managing

the bank’s funding and risk profile. The inclusion of derivatives in both asset and funding

dimensions indicates that these banks are using them not only to manage their investments

but also to stabilize their funding sources, particularly in volatile market conditions. This

may reflect banks’ proactive strategy in managing liquidity, interest rate risks, and market

exposure.

These identified clusters suggest distinct managerial approaches among banks.

Although it is worth noting that the engagement with derivatives appears similar across

all clusters, indicating a more uniform approach in terms of funding and risk

management. That said, banks within a specific cluster can still display notable

heterogeneity in certain characteristics. Banks in Cluster 2 exhibit an income mix

strategy more geared towards interest revenues, representing deposit-oriented banks.

Banks in Cluster 1 specialize in non-interest income but also in asset composition such as

loans, indicating an efficient loan-making process. Banks in Cluster 3 follow a more

traditional type of BBM that relies on the loan-making process, which is inherently

labor-intensive, requiring skilled personnel to assess creditworthiness, manage client

relationships, and tailor financial solutions. This is reflected in the high labor costs

associated with these banks. Banks in Cluster 4 consist of securities- and

derivative-oriented banks, with their business model likely to rely heavily on

computerized securities trading, including high-frequency and algorithmic trading. This

model places a significant emphasis on physical capital, such as trading infrastructure,

servers, and advanced IT systems, which is evident in the high marginal effect of physical

capital on total costs. This suggests that technological infrastructure is a primary driver

of costs for these banks. Additionally, these institutions show minimal sensitivity to labor

costs, pointing to a lower reliance on human-intensive processes compared to
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loan-oriented banks. However, there are fewer EU banks in Cluster 4 compared to the

other clusters, suggesting that the EU banking sector is dominated by more traditional

banking models that rely on loans and deposits.

Table 5: Z variables selected in the Logit Stick-Breaking Process for each cluster

Predictor Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept ✓ ✓ ✓ ✓

Panel A. Asset composition

Loans ✓ ✓ ✓ ✓

Loans to banks ✓ ✓ ✓

Derivatives ✓ ✓ ✓

Securities ✓ ✓ ✓

Non-earning assets ✓ ✓

Fixed assets ✓

Panel B. Funding quality

Deposits ✓ ✓

Bank deposits ✓ ✓

Short-term funding ✓ ✓

Derivatives ✓ ✓ ✓ ✓

Long-term funding ✓

Reserves ✓

Equity ✓ ✓ ✓

Panel C. Income mix

Non-interest income ✓

Interest income ✓

Figure 5 presents key insights into the four identified BBM during the sample period,

segmented across four panels. Panel A depicts the frequency of business model switches

per year, Panel B illustrates the number of business model switches made by each bank,

Panel C shows the number of transitions into each cluster across all time periods and banks,

and Panel D provides the total number of switches across all banks. Panel A shows that

transitions picked in the aftermath of the global financial crisis in 2011 at a year that

transitory bank efficiency dropped at it lowest point. Based on our findings it appears that

the transition between BBMs was strategically opted with some lags to support recovery

in efficiency that dropped due to the crisis. Banks, therefore, switch BBM with lags in

response to a major shock. Interestingly transitions between BBMs picked again in 2021
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due to the COVID-19 pandemic at a year the transitory (short-run) efficiency dropped.

Panel B of Figure 5 highlights that a low portion of banks of around 28.0 percent do not

switch between two different business models over the sample period, suggesting that the

vast majority of banks will switch BBM at least once during the sample period as response

to changing market conditions. The average number of transitions between BBMs per

bank i, where i = 1, ..., 493, is around three times and ranges from zero to eight (but

this is relevant just for one bank). It is worth noting that for around 100 banks out of

493 transition takes place more than four times within the sample period, implying that

switching BBMs might not be as rigid as previous literature suggested (Custodio João et al.,

2023). One of the main advantages of our model is that allows for multiple transitions for

a given bank and this provides flexibility compared with previous models. Panel D of

Figure 5 demonstrates this flexibility using a histogram.

Figure 5: Analysis of Cluster Transitions for Banks Over Time
This figure presents a detailed analysis of the cluster transitions of banks over time, divided
into four panels: the top left panel shows the frequency of transitions for each bank per
year, illustrating how often banks change clusters over time; the top right panel displays
the distribution of transitions per bank, indicating how many times each bank transitions
clusters throughout the observation period; the bottom left panel presents the histogram
of transitions to each cluster, showing how frequently banks move into each of the possible
clusters across all time periods; and the bottom right panel provides the histogram of
cluster transitions per bank, highlighting the frequency with which banks transition from
one cluster to another over time.
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4.5 Robustness of our results

We perform a series of robustness tests. First, we control for time-varying country-level

characteristics in the efficiency estimation to capture differences in macroeconomic

conditions, market structure and financial development. Second, to address potential

endogeneity concerns, we perform a robustness check by lagging the BBM variables by

one period. Third, we adjust the model to use both a smaller and a larger number of

clusters to assess how sensitive the clustering results are to the choice of (maximum)

cluster count. Finally, we consider a restricted version of the translog cost function where

certain coefficients are constrained to follow theoretically motivated sign restrictions.

While our cluster model is heavily parametrized resulting in quantitative discrepancies

between different specifications (especially when we consider theory-based sign

restrictions), overall our results remain qualitatively consistent across these tests. For

brevity, we provide these additional results in the online supplement.

5 Conclusions

We propose a novel Bayesian approach to identifying BBMs, departing from conventional

clustering methods. Our four-error component translog cost function model is based on

the underlying economic fundamentals that imply banks are optimising in terms of cost

minimization. This modelling approach is dynamic, allowing for transitions between

different BBMs over time. Over a long period of time that major shocks took place our

modelling approach is of particular importance. In our empirical investigation of EU

banks from 2008 to 2022, we uncover BBM clusters and their dynamics, highlighting the

heterogeneous nature of banks operating across identified clusters. We also find

compelling evidence of banks switching between BBMs following a major shock like the

global financial crisis and the COVID-19. Our analysis shows that switches between

BBMs are linked to significant changes in transitory bank efficiency, as bank management

seeks to improve efficiency.
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A Technical Appendix

A.1 Model Representation

The full model with response variable yit, for firm i at time t, can be represented as follows

yit | Git = k, βk, ai, η
+
i , u

+
it,k, σ

2
v,k ∼ N

(
x′itβk + ai + η+i + uit,k, σ

2
v,k

)
, (A.1)

where ai ∼ N(0, σ2
a) is the firm-specific heterogeneity for cluster k, η+i ∼ N+(0, σ

2
η) is the

persistent (time-invariant) inefficiency, uit,k ∼ N+(0, σ
2
u,k) is the transient (time-varying)

inefficiency for cluster k and vit,k ∼ N(0, σ2
v,k) is the noise for cluster k. The model is

completed by specifying priors for the unknown parameters. First, the mixing weights

πk (zit) = prob (Git = k|zit) depend on the exogenous variables zit and are defined as

πk = νk (zit)
k−1∏
l=1

[1− νl (zit)] , νk (zit) = logit−1(z′itαk),

The regression coefficients αk have a continuous spike and slab prior of the form

αj,k | γj,k ∼ (1− γj,k)N(0, τ 20 ) + γj,kN(0, τ 21 ) (A.2)

γj,k ∼ Bernoulli(0.5), (A.3)

for j = 1, ..., q and k = 1, ..., K. Finally the remaining coefficients in (A.1) have

noninformative priors, following Tsionas and Kumbhakar (2014)

βk ∼ N(0, A−1),
Qκ1

σ2
κ1,k

∼ χ2 (Nκ1) ,
Qκ2

σ2
κ2

∼ χ2 (Nκ2) , (A.4)

where A = 10−4I, Nκ1 = Nκ2 = 1 and Qκ1 = Qκ2 = 10−4, for κ1 = u, v and κ2 = a, η.

A.2 Conditional posteriors and sampling

The Gibbs sampler iteratively updates all parameters from the following conditional

posterior distributions:

Step 1: Update Cluster Assignments Git

The probability that Git = k is:

P (Git = k | −) ∝ πk (zit) ·N
(
yit | x′itβk + ai + ηi + uit,k, σ

2
v,k

)
,
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where πk (zit) is the weight of component k. We can sample Git from the multinomial

distribution using the probabilities defined above.

Construct data matrices/vector xk, zk, yk, and uk by selecting only those observations

(i, t) from x, z, y, and u for which Git = k. these will be used in steps 2 and 3 below.

Step 2: Update Stick-Breaking Coefficients αk

For each k = 1, . . . , K:

1. Generate Pólya-Gamma latent variables:

ωit,k ∼ PG(1, z′itαk), ∀i, t. (A.5)

2. Update αk from the Gaussian posterior:

αj,k | − ∼ N
(
Σαk

(
z′k (ζk − 0.5) + Σ−1

α µα

)
,Σαk

)
, (A.6)

where Σαk
= (z′kΩkzk + Σ−1

α )
−1
, Ωk = diag(ωit,k), ζk = {ζit,k}i,t, ζit,k = 1 if

Git = k and ζit,k = 0 if Git > k and Σα = diag ((1− γj,k)τ
2
0 + γj,kτ

2
1 )

3. Update γj,k from the Bernoulli posterior

γj,k | − ∼ Bernoulli

(
π̃1

π̃1 + π̃0

)
(A.7)

where π̃0 = (1− π0)×N(αj,k|0, τ 20 ) and π̃1 = (1− π1)×N(αj,k|0, τ 21 ).

Step 3: Update Regression Coefficients βk

For each cluster k, conditionally on Git = k:

βk | − ∼ N

(
Σβk

(
x′kyk
σ2
v,k

)
,Σβk

)
,

where Σβk
=
(

x′
kxk

σ2
v,k

+ A
)−1

, ỹk = (yk − δ ⊗ ιT − uk).

Step 4: Update Bank-Specific Heterogeneity δi = ai + η+i
For each firm i sample from the posterior

p(δi | −) ∝ exp

(
−(Ri − di1T )

′(Ri − di1T )

2Σv

− δ2i
σ2
δ

)
Φ

(
λδi
σδ

)
, (A.8)

where Ri =
∑T

t=1 yit − x′itβ(Git=k) − u+it and σ
2
δ = σ2

a + σ2
η and Σv is an nT × 1 vector

with Σv,it =
∑K

k=1 I (Git = k)σ2
v,k for all i, t. As this is not a conditional posterior
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we can directly sample from, we follow Tsionas and Kumbhakar (2014) and use a

Metropolis-Hasting step, see Section 3.3.1 of their paper.

Step 5: Update Persistent Inefficiency η+i
For each firm i, sample η+i from a truncated normal:

η+i ∼ N+(µi, ϕ
2) (A.9)

where ϕ2 =
(
1/σ2

η + 1′
nTΣ

−11nT

)−1
and µi = ϕ21⊤

TΣ
−1Di. Here

Σ = InT ⊗ σ2
a (1

′
nT1nT ) + Σv is an nT × nT covariance matrix, and

Di =
∑T

t=1 yit − xitβ(Git=k) − u+it .

Step 6: Update Transient Inefficiency u+it
For each observation it, sample u+it from a truncated normal:

u+it | − ∼ N+

(
ũit,

Σv,itΣu,it

Σv,it + Σu,it

)
(A.10)

where ũit =
Σu,it(yit−xitβ(Git=k)−δi)

Σv,it+Σu,it
where similar to Σv defined previously, Σu is also

an nT × 1 vector with Σu,it =
∑K

k=1 I (Git = k)σ2
u,k.

Step 7: Update Variance Components

For each cluster k, update the variances as follows:

σ2
v,k | − ∼

∑
i,t

(
yit − x′itβ(Git=k) − ai − η+i − uit

)2
χ2
nGk

,

σ2
u,k | − ∼

∑
i,t I (Git = k)u2it

χ2
nGk

, nGk
=
∑
i,t

I (Git = k) ,

σ2
η | − ∼

∑
i:Gi=k

(
η+i
)2

χ2
n

,

σ2
a | − ∼

∑
i:Gi=k a

2
i

χ2
n

.
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Online Supplement to “Bayesian
Nonparametric Inference in Bank Business
Models with Transient and Persistent Cost

Inefficiency”
Dimitris Korobilis and Emmanuel Mamatzakis and Vasileios Pappas

S.1 Data Appendix

Our sample consists of commercial, cooperative, and savings banks from the European Union
and the United Kingdom, covering the period 2008–2022. We obtain annual financial data from
BankFocus, excluding banks without a complete data history. The data is cleaned according to
standard empirical banking practices:

1. Exclusion of incomplete data: We remove banks with missing values for key financial
variables, including assets, deposits, liabilities, equity, and income.

2. Preference for consolidated reports: If a bank provides both consolidated and
unconsolidated financial statements, we use the consolidated version.

3. Selection criteria for multiple reports: When multiple financial statements are
available, we prioritize restated over original, audited over unaudited, and International
Financial Reporting Standards (IFRS) over Generally Accepted Accounting Principles
(GAAP)-based reports.

4. Outlier treatment: To mitigate the influence of extreme values, we winsorize key financial
variables at the 1st and 99th percentiles.

The final balanced panel consists of 7,395 bank-year observations, corresponding to 15
annual observations (T = 15) for 493 banks (n = 493). The number of banks per country
ranges from one (Estonia, Greece) to 258 (Germany). The sample includes all EU-27
countries except Cyprus, covering: Austria, Belgium, Bulgaria, Croatia, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden, and the United Kingdom. All monetary values are converted to real terms
using country-specific GDP deflators from the IMF’s International Financial Statistics
database, with 2010 as the base year.

For cost efficiency estimation, consistent with the bank efficiency literature (Sealey and
Lindley, 1977; Berger and Humphrey, 1997), we adopt the intermediary approach, which
assumes that banks collect funds and use labor and physical capital to transform them into
loans and other earning assets. The bank’s technology is modeled using a translog cost function
with three inputs—labor, physical capital, and financial capital—and two outputs: loans and
other earning assets. The input prices are defined as follows: the price of labor is the ratio of
personnel expenses to total assets, the price of physical capital is the ratio of administrative
expenses to fixed assets, and the price of financial capital is total interest expenses divided by
total interest-bearing borrowed funds. Total cost is defined as the sum of operating expenses,
interest expenses, and non-interest expenses. Table S.1 presents key summary statistics.
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Table S.1: Summary statistics: Outputs and inputs.

Variable Mean SD P1 Median P99 Obs

Loans 5,634.08 8,121.42 57.45 2,628.44 51,302.28 7,395
Other earning assets 1,586.20 3,027.31 0.01 842.94 25,604.47 7,395
Total cost 156.80 209.33 10.51 88.38 1,616.73 7,395
Price of labor 0.0091 0.0039 0.0001 0.0094 0.0215 7,395
Price of financial capital 1.3493 1.0809 0.0128 1.1108 5.0360 7,395
Price of physical capital 2.4035 8.1811 0.0100 0.6467 67.9978 7,395

Notes: The table presents summary statistics of the outputs, inputs, and total cost variables used in the cost
efficiency estimation. The variables are winsorized at the 1/99 percentiles and deflated using the country-specific

GDP deflator.

For identifying bank business models, we strategically select variables across three key
dimensions: (i) asset composition, (ii) funding quality, and (iii) income mix. Our variable
selection aligns with prior works of Badunenko et al. (2021), Curi et al. (2015), and Elsas et al.
(2010). Specifically, asset composition includes loans, loans to banks, derivatives, securities,
non-earning assets, and fixed assets. Funding quality comprises deposits, bank deposits,
short-term funding, derivatives, long-term funding, reserves, and equity. Income mix focuses on
interest income and non-interest income. Table S.2 presents key summary statistics.

Table S.2: Summary statistics: Bank business models

Variable Mean SD P1 Median P99 Obs

Panel A. Asset composition
Loans 7,007.12 26,387.11 57.45 2,628.44 51,302.28 7,395
Loans to banks 1,398.54 6,103.98 1.72 304.97 18,595.35 7,395
Derivatives 1,191.47 28,055.88 0.00 0.00 1,936.91 7,395
Securities 4,127.35 53,105.80 0.00 842.94 25,604.47 7,395
Non-earning assets 711.71 6,856.80 0.14 98.29 6,571.46 7,395
Fixed assets 75.12 304.74 0.00 32.66 723.52 7,395

Panel B. Funding quality
Deposits 6,369.59 24,671.78 57.91 2,904.58 46,887.70 7,395
Bank deposits 2,085.45 6,342.55 0.00 498.68 20,121.28 7,395
Short-term funding 8,732.18 42,136.56 0.00 3,425.51 65,277.09 7,395
Derivatives 1,182.34 27,555.03 0.00 0.00 2,570.07 7,395
Long-term funding 931.70 5,308.67 0.00 13.45 20,935.95 7,395
Reserves 511.36 8,727.03 4.48 63.30 7,353.87 7,395
Equity 929.28 3,879.91 46.05 353.04 6,217.61 7,395

Panel C. Income mix
Non-interest income 136.03 1,004.11 -0.66 35.31 1,030.30 7,395
Interest income 341.23 2,906.40 13.62 114.21 2,666.30 7,395

Notes: The table presents summary statistics of the bank business models dimensions. The variables are deflated
using the country-specific GDP deflator.
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S.2 Additional empirical results

In this section we present results from additional runs of our model using different assumptions.
In subsection S.2.1 we present efficiency estimates from our model with K = 1 and K = 3,
where we remind that the special case K = 1 is the model in Tsionas and Kumbhakar (2014). In
subsection S.2.2 and subsection S.2.3 we show results from various versions of our model. In one
case we estimate the model with the LSBP prior being dependent on the first lag of zit, i.e. we
convert equation (4) in the main paper into

πk (zit) = νk (zit−1)

k−1∏
l=1

[1− νl (zit−1)] , (S.1)

where nuk is the same logit function for cluster k = 1, ...,K.
We also consider a restricted version of the translog cost function where certain coefficients

are constrained to follow theoretically motivated sign restrictions. Specifically, we impose the
following restrictions:

� First-order coefficients: The coefficients on the output terms (b1, b2) and input price
terms (a1, a2, a3) are constrained to be positive, ensuring that cost increases with output
and input prices.

� Second-order coefficients:

– The quadratic terms for input prices (a11, a22, a33) are constrained to be positive,
ensuring concavity of the cost function in input prices.

– No sign restrictions are imposed on the quadratic terms for outputs (b11, b12, b22) or on
cross-terms between inputs (a12, a13, a23).

� Interaction terms between outputs and inputs (gkm): No sign restrictions are imposed
on these parameters.

� Time trend terms (τt, τ
2
t ): The linear trend (τt) and quadratic trend (τ2t ) are constrained

to be negative, capturing potential cost-reducing technological progress over time.

� Additional controls (d1, d2, θ1, θ2, θ3): No sign restrictions are imposed.

These restrictions are implemented to ensure consistency with economic theory while allowing
sufficient flexibility in the estimation.
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S.2.1 Efficiency measures

Figure S.1: Efficiency Decomposition in the LSBP Stochastic Frontier Model (K = 1
clusters, that is, the model in Tsionas and Kumbhakar (2014)):
This figure presents the decomposition of efficiency into permanent and transitory components.
The top left panel displays the histogram of permanent efficiency, illustrating the distribution
of long-term efficiency levels across banks. The bottom panel shows the histogram of transient
efficiency, capturing the short-term fluctuations in efficiency across all banks and time periods.
The right panel, spanning the right half of the figure, presents a 3D histogram of transient
efficiencies, visualizing how these vary across banks and years.
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Figure S.2: Efficiency Decomposition in the LSBP Stochastic Frontier Model (K = 3
clusters):
This figure presents the decomposition of efficiency into permanent and transitory components.
The top left panel displays the histogram of permanent efficiency, illustrating the distribution
of long-term efficiency levels across banks. The bottom panel shows the histogram of transient
efficiency, capturing the short-term fluctuations in efficiency across all banks and time periods.
The right panel, spanning the right half of the figure, presents a 3D histogram of transient
efficiencies, visualizing how these vary across banks and years.
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S.2.2 BBM determinants under alternative assumptions

Table S.3: Z variables selected in the Logit Stick-Breaking Process for each cluster

Predictor Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept ✓ ✓ ✓ ✓
Panel A. Asset composition

Loans ✓ ✓ ✓ ✓
Loans to banks ✓ ✓ ✓
Derivatives ✓ ✓
Securities ✓ ✓
Non-earning assets ✓ ✓
Fixed assets

Panel B. Funding quality

Deposits ✓ ✓ ✓
Bank deposits ✓ ✓
Short-term funding ✓ ✓
Derivatives ✓ ✓ ✓ ✓
Long-term funding ✓
Reserves ✓
Equity ✓ ✓
Panel C. Income mix

Non-interest income ✓ ✓
Interest income ✓

Notes: This is the equivalent of Table 5 in the main text, but the variables zit entering the LSBP specification with
a lag, to address endogeneity concerns in the determination of the clusters/BBMs.
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Table S.4: zit variables selected in the Logit Stick-Breaking Process for each cluster

Predictor Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept ✓ ✓ ✓ ✓
Panel A. Asset composition

Loans (aL) ✓ ✓ ✓
Loans to banks (aLTB) ✓ ✓ ✓
Derivatives (aDERV) ✓ ✓ ✓
Securities (aSEC) ✓ ✓ ✓
Non-earning assets (aNEA) ✓ ✓
Fixed assets (aFA) ✓ ✓ ✓
Panel B. Funding quality

Deposits (dDEP) ✓ ✓
Bank deposits (dDEPB) ✓
Short-term funding (dSTB) ✓ ✓
Deposit variations (dDEVT) ✓ ✓
Long-term funding (dLTF) ✓
Reserves (dREV) ✓
Equity (dEQT) ✓ ✓ ✓
Panel C. Income mix

Non-interest income (iNII) ✓ ✓
Interest income (iII) ✓ ✓

Notes: This is the equivalent of Table 5 in the main text, but with coefficients of the translog function having sign
restrictions.
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S.2.3 Estimated translog function coefficients

Table S.5: Regression Coefficients by Cluster: Benchmark model, K = 4

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

β0 1.355 (0.530) 18.790 (5.289) 2.281 (0.430) 3.125 (0.393)
βy
1 0.410 (0.081) -1.403 (0.829) 0.472 (0.077) 0.029 (0.089)

βy
2 0.170 (0.027) 0.044 (0.432) 0.146 (0.019) 0.018 (0.034)

βw
1 0.475 (0.177) 3.353 (0.826) 0.912 (0.073) 0.391 (0.070)

βw
2 0.325 (0.134) 0.822 (0.812) 0.189 (0.096) 0.050 (0.054)

βw
3 0.123 (0.047) 0.132 (0.380) 0.132 (0.035) 0.032 (0.035)

βyy
11 0.109 (0.011) 0.225 (0.090) 0.069 (0.009) 0.151 (0.008)

βyy
12 -0.031 (0.008) -0.044 (0.083) -0.014 (0.005) -0.030 (0.006)

βyy
22 0.015 (0.002) 0.033 (0.014) 0.006 (0.001) 0.032 (0.002)

βww
11 0.157 (0.028) 0.384 (0.074) 0.255 (0.011) 0.133 (0.023)

βww
12 0.095 (0.031) -0.124 (0.138) 0.120 (0.021) -0.007 (0.019)

βww
13 -0.000 (0.010) 0.029 (0.041) 0.020 (0.006) 0.005 (0.008)

βww
22 -0.045 (0.011) -0.037 (0.138) -0.000 (0.010) 0.013 (0.007)

βww
23 0.004 (0.015) 0.020 (0.088) -0.014 (0.010) 0.003 (0.014)

βww
33 0.002 (0.003) -0.049 (0.030) 0.009 (0.003) 0.005 (0.004)

βyw
11 0.109 (0.007) -0.039 (0.075) 0.074 (0.006) 0.104 (0.015)

βyw
12 -0.018 (0.010) -0.135 (0.112) 0.010 (0.007) -0.017 (0.008)

βyw
13 -0.015 (0.004) -0.009 (0.046) -0.008 (0.003) -0.003 (0.003)

βyw
21 0.002 (0.005) 0.009 (0.029) 0.011 (0.003) -0.013 (0.004)

βyw
22 0.002 (0.007) 0.013 (0.037) -0.000 (0.004) 0.007 (0.005)

βyw
23 0.001 (0.002) 0.011 (0.018) 0.003 (0.002) 0.003 (0.001)

βτ 0.030 (0.019) -0.304 (0.247) 0.018 (0.016) 0.050 (0.018)
βτ2 -0.003 (0.001) -0.008 (0.005) -0.002 (0.000) -0.000 (0.000)
βδ
1 0.001 (0.002) 0.010 (0.024) 0.007 (0.002) -0.001 (0.001)

βδ
2 -0.003 (0.002) 0.015 (0.012) -0.001 (0.001) -0.002 (0.001)

βθ
1 -0.005 (0.003) -0.046 (0.020) 0.011 (0.002) 0.005 (0.003)

βθ
2 -0.002 (0.003) -0.020 (0.025) -0.002 (0.002) 0.003 (0.002)

βθ
3 -0.001 (0.001) -0.001 (0.012) -0.001 (0.001) 0.001 (0.001)
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Table S.6: Regression Coefficients by Cluster: Model with sign restrictions, K = 4

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

β0 3.070 (0.170) 3.703 (0.362) 4.119 (0.194) 6.176 (0.948)
βy
1 0.122 (0.020) 0.080 (0.038) 0.079 (0.021) 0.200 (0.117)

βy
2 0.038 (0.016) 0.023 (0.007) 0.012 (0.007) 0.299 (0.137)

βw
1 0.173 (0.035) 0.146 (0.045) 0.140 (0.031) 1.489 (0.169)

βw
2 0.034 (0.033) 0.029 (0.025) 0.035 (0.044) 0.157 (0.115)

βw
3 0.133 (0.050) 0.063 (0.043) 0.027 (0.028) 0.188 (0.086)

βyy
11 0.044 (0.009) 0.040 (0.012) 0.030 (0.006) 0.052 (0.015)

βyy
12 0.008 (0.003) 0.006 (0.004) -0.001 (0.000) -0.033 (0.029)

βyy
22 0.005 (0.004) 0.001 (0.006) 0.003 (0.002) 0.017 (0.009)

βww
11 0.002 (0.003) 0.001 (0.001) 0.000 (0.000) 0.231 (0.025)

βww
12 -0.070 (0.047) 0.056 (0.012) -0.007 (0.012) -0.021 (0.045)

βww
13 0.023 (0.016) 0.020 (0.025) -0.057 (0.007) 0.062 (0.017)

βww
22 0.006 (0.008) 0.002 (0.002) 0.002 (0.001) 0.011 (0.010)

βww
23 -0.051 (0.032) -0.031 (0.019) 0.008 (0.004) 0.027 (0.027)

βww
33 0.005 (0.004) 0.001 (0.001) 0.001 (0.001) 0.015 (0.008)

βyw
11 0.032 (0.006) 0.023 (0.009) 0.013 (0.004) 0.020 (0.010)

βyw
12 -0.033 (0.023) 0.003 (0.004) -0.004 (0.005) -0.028 (0.018)

βyw
13 0.002 (0.005) 0.005 (0.005) -0.019 (0.001) 0.005 (0.008)

βyw
21 0.002 (0.001) 0.003 (0.003) 0.002 (0.000) 0.036 (0.012)

βyw
22 -0.004 (0.004) 0.004 (0.005) -0.003 (0.003) 0.007 (0.015)

βyw
23 -0.005 (0.004) -0.004 (0.005) 0.001 (0.001) 0.001 (0.009)

βτ -0.014 (0.007) -0.020 (0.007) -0.016 (0.002) -0.022 (0.019)
βτ2 -0.004 (0.002) -0.002 (0.001) -0.001 (0.000) -0.003 (0.002)
βδ
1 0.017 (0.003) 0.010 (0.002) 0.007 (0.002) 0.001 (0.006)

βδ
2 -0.004 (0.001) -0.002 (0.000) -0.000 (0.000) -0.003 (0.003)

βθ
1 0.005 (0.002) 0.004 (0.002) 0.010 (0.001) -0.015 (0.005)

βθ
2 0.006 (0.003) 0.004 (0.003) -0.001 (0.001) 0.003 (0.008)

βθ
3 -0.011 (0.004) -0.006 (0.002) -0.000 (0.001) -0.002 (0.004)
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Table S.7: Regression Coefficients by Cluster: Model with country-specific predictors, K = 4

Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4

β0 0.433 (0.418) 21.709 (3.477) 3.614 (0.563) 4.967 (0.438)
βy
1 0.408 (0.094) -1.226 (0.610) -0.089 (0.114) -0.150 (0.091)

βy
2 0.090 (0.038) -0.296 (0.294) 0.139 (0.024) 0.084 (0.017)

βw
1 -0.199 (0.078) 3.419 (0.693) 0.668 (0.107) 0.707 (0.078)

βw
2 0.118 (0.068) 0.395 (0.951) 0.332 (0.045) -0.036 (0.047)

βw
3 0.013 (0.038) 0.260 (0.318) 0.033 (0.044) 0.141 (0.028)

βyy
11 0.123 (0.012) 0.159 (0.100) 0.140 (0.014) 0.173 (0.010)

βyy
12 -0.007 (0.010) 0.011 (0.084) -0.025 (0.008) -0.038 (0.006)

βyy
22 0.016 (0.002) 0.036 (0.013) 0.017 (0.002) 0.028 (0.003)

βww
11 0.084 (0.011) 0.397 (0.086) 0.190 (0.011) 0.185 (0.010)

βww
12 0.051 (0.013) -0.127 (0.170) 0.152 (0.014) -0.007 (0.018)

βww
13 -0.039 (0.008) 0.094 (0.052) 0.015 (0.007) 0.024 (0.010)

βww
22 0.032 (0.010) 0.117 (0.132) 0.014 (0.007) 0.027 (0.006)

βww
23 -0.018 (0.008) 0.065 (0.129) -0.037 (0.006) -0.003 (0.005)

βww
33 -0.006 (0.004) -0.044 (0.036) 0.007 (0.004) -0.001 (0.002)

βyw
11 0.146 (0.006) -0.046 (0.058) 0.053 (0.008) 0.102 (0.006)

βyw
12 -0.001 (0.005) -0.113 (0.108) -0.011 (0.004) -0.003 (0.008)

βyw
13 -0.016 (0.004) 0.006 (0.040) 0.010 (0.005) -0.009 (0.002)

βyw
21 0.009 (0.002) 0.012 (0.035) 0.010 (0.002) -0.009 (0.003)

βyw
22 -0.009 (0.002) 0.072 (0.050) 0.010 (0.005) 0.002 (0.004)

βyw
23 0.002 (0.002) 0.019 (0.023) -0.004 (0.001) -0.000 (0.002)

βτ -0.039 (0.015) -0.354 (0.215) 0.107 (0.020) -0.039 (0.016)
βτ2 -0.001 (0.000) -0.004 (0.005) -0.000 (0.000) -0.001 (0.000)
βδ
1 0.005 (0.001) 0.014 (0.019) -0.001 (0.002) 0.004 (0.002)

βδ
2 -0.001 (0.001) 0.027 (0.012) 0.001 (0.001) -0.005 (0.001)

βθ
1 -0.002 (0.002) -0.020 (0.019) 0.024 (0.002) -0.009 (0.002)

βθ
2 0.002 (0.001) -0.008 (0.023) 0.005 (0.001) 0.004 (0.002)

βθ
3 -0.001 (0.001) -0.015 (0.012) -0.004 (0.001) 0.000 (0.001)

Infl CPI -1.532 (0.300) -2.809 (3.910) 0.101 (0.247) 0.749 (0.265)
GDP real gr 0.353 (0.167) 1.193 (1.386) 0.145 (0.137) 0.155 (0.118)
Credit priv sect -0.003 (0.000) -0.016 (0.003) -0.003 (0.000) -0.003 (0.000)
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