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Determination of 𝒈 by Kater pendulum 

Simple and compound pendulums 

The reversible, or Kater, pendulum was devised by Henry Kater in 1817 to be used for 

determining the local value of 𝑔.  Its advantage lay in the fact that the position of the 

centre of mass did not need to be accurately determined.  It is an example of a 

compound pendulum.  A simple pendulum is an idealised model, where there is a 

point-mass suspended at the end of a massless, unstretchable string.  If the mass is 

pulled through a small angle 𝜃 and then released, the mass will oscillate about its 

equilibrium position with angular frequency 𝜔 and period 𝑇 given by the following 

expressions: 

𝜔 = &
𝑔
𝐿 ; 𝑇 = 2𝜋+

𝐿
𝑔 

[1a,b] 

where 𝐿 is the length of the pendulum string and 𝑔 is the acceleration due to gravity.  A 

compound pendulum better models reality, where the mass of the oscillating object is 

distributed, rather than concentrated in a single point. 
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Consider the irregularly shaped object shown in Figure 1.  This can turn about an axis 

through the point 𝑂.  In equilibrium, its centre of mass (𝐶𝑀) is directly below this point. 

In the figure this point has been moved through 

and angle 𝜃.  If we define the distance from 𝑂 to 

𝐶𝑀 to be ℎ, and say that the total mass is 𝑚, and 

that the masses moment of inertia about 𝑂 is 𝐼, 

then the weight of the object will create a restoring 

torque: 

𝜏 = −𝑚𝑔ℎ sin(𝜃) 

If we assume that the displacement angle is 

small., this simplifies to  

𝜏 = −𝑚𝑔ℎ𝜃 

[2] 

The minus sign is there as this is a restoring torque.  Using the angular version of 

Newton’s laws – and assuming there are no other forces in play – we can state: 

−𝑚𝑔ℎ𝜃 = 𝐼
𝑑!𝜃
𝑑𝑡!  

 

⇒
𝑑!𝜃
𝑑𝑡! +

𝑚𝑔ℎ
𝐼 𝜃 = 0 

[3] 

 

Consider the units of these terms: 𝑚 is measured in kg; 𝑔 in ms"!; ℎ in m; 𝐼 in kgm!.  

This means that the units of #$%
&

 are '()*
!")

'()" = '()"*!"

'()" = s"!.  Therefore we can see that 

here the angular frequency is given by the square root of this combination: 

𝜔 = +𝑚𝑔ℎ
𝐼  

and in turn, 

𝑇 = 2𝜋+
𝐼

𝑚𝑔ℎ 

[4a,b] 

Figure 1:  A compound pendulum 
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For a compound pendulum, 𝐼 can be expressed in terms of ℎ and 𝑘, where 𝑘 is the 

radius of gyration – this is the distance from 𝑂 that a point mass of mass equal to the 

distributed mass would be located to generate the same motion.   

𝐼 = 𝑚(ℎ! + 𝑘!) 

 

⇒ 𝑇 = 2𝜋+
𝑚(ℎ! + 𝑘!)

𝑚𝑔ℎ = 2𝜋+
ℎ! + 𝑘!

𝑔ℎ  

[5] 

As in the case of the simple pendulum, the mass plays no part in the period calculation. 

The Kater Pendulum 

There are various designs of the Kater pendulum.  The design of the one that will be 

used at the University of Glasgow is illustrated in Figure 2.   

 

The pendulum consists of a long rod, to which two masses have been attached.  At one 

end there is a large, fixed mass (𝑀), below which are a fixed set of knife edges, labelled 

𝐾+ which the pendulum balances on.   Further down is a second mass (𝑚) which can be 

moved along the rod. Its position can be fixed by a locking screw 𝐿.  There are a second 

set of knife edges, 𝐾!, identical to those at 𝐾+, but pointing in the opposite direction.  

This allows the pendulum to be suspended with the large mass 𝑀 uppermost using set 

𝐾+, or at the lower end of the pendulum, using set 𝐾!. 
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When the pendulum is suspended from knife edges 𝐾+, the 

period of oscillation, 𝑇+, is given by the compound pendulum 

equation: 

𝑇+ = 2𝜋+
ℎ+! + 𝑘!

𝑔ℎ+
 

[6] 

Here ℎ+ is the distance from the knife edges 𝐾+ to the centre 

of mass of the pendulum, and 𝑘 is the radius of gyration of the 

pendulum.  Similarly, when the pendulum is suspended from 

𝐾!, the period of oscillation 𝑇! is given by: 

𝑇! = 2𝜋+
ℎ!! + 𝑘!

𝑔ℎ!
 

[7] 

 where ℎ! is the distance from the knife edges 𝐾! to the centre 

of mass of the pendulum. 

 

Rearranging [6] and [7] gives us … 

𝑇+ = 2𝜋+
ℎ+! + 𝑘!

𝑔ℎ+
⇒
𝑔ℎ+𝑇+!

4𝜋! = ℎ+! + 𝑘! 

[8] 

𝑇! = 2𝜋+
ℎ!! + 𝑘!

𝑔ℎ!
⇒
𝑔ℎ!𝑇!!

4𝜋! = ℎ!! + 𝑘! 

 [9] 

then subtracting [9] from [8] eliminates 𝑘: 

𝑔ℎ+𝑇+!

4𝜋! −
𝑔ℎ!𝑇!!

4𝜋! = ℎ+! − ℎ!! ⇒
𝑔
4𝜋!

(ℎ+𝑇+! − ℎ!𝑇!!) = ℎ+! − ℎ!! 

 

⇒
4𝜋!

𝑔 =
ℎ+𝑇+! − ℎ!𝑇!!

ℎ+! − ℎ!!
 

[10] 

 

Figure 2: Kater pendulum 
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In 1826 the German mathematician and astronomer Friedrich Bessel showed that [10] 

could be written in the following form: 

4𝜋!

𝑔 =
𝑇+! + 𝑇!!

2(ℎ+ + ℎ!)
+

𝑇+! − 𝑇!!

2(ℎ+ − ℎ!)
 

[11] 

Provided that 𝑀 ≫ 𝑚 then ℎ+ − ℎ! is going to be a relatively large value.  Further, if 

adjustments are made so that 𝑇+ and 𝑇! are brought as close together as possible, such 

that 𝑇+! − 𝑇!! becomes very small, then we can ignore the 2nd term above and simply 

write: 

4𝜋!

𝑔 =
𝑇+! + 𝑇!!

2(ℎ+ + ℎ!)
 

 

⇒
𝑔
4𝜋! =

2(ℎ+ + ℎ!)
𝑇+! + 𝑇!!

 

 

⇒ 𝑔 =
8𝜋!(ℎ+ + ℎ!)
𝑇+! + 𝑇!!

 

[12] 
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Notes on equipment 

Equipment list 

he equipment provided for this Experiment are: 

§ The Kater Pendulum 

§ Support bracket for suspending the pendulum 

§ Allen key for loosening and tightening locking screw 

§ A digitimer and lightgate for measuring period 

§ Kevlar safety gloves 

§ Metre rule 

 

Equipment guidance 

Pendulum: 

§ The utmost care must be taken when working with the Kater pendulum as the 

knife edges that it balances on are extremely sharp.  Always wear Kevlar Safety 

Gloves when setting the pendulum to balance on 𝐾+ and 𝐾!. 

 

Digitimer and lightgate: 

Figure 3 shows the digitimer. 

Figure 3: Digitimer 
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§ To make sure it is working correctly, the FUNCTION SWITCH must be set to 

“period” and the RANGE to “ms”.  It must also be set to take “continuous” 

readings. 

§ To make sure the period is correctly recorded, the lightgate must be positioned 

such that small oscillations of the pendulum allow the end of the rod to 

interrupt, but not pass completely through, the lightgate beam. 

 

 

Original script: Peter Law 

Updated script: Peter H Sneddon 


