LIFE: Leader-driven Hierarchical & Inclusive Federated Learning

Wenhao Li, Christos Anagnostopoulos, Shameem Puthiya Parambath, Kevin Bryson University of Glasgow, UK

IEEE BigData 2024 Special Session on Federated Learning on Big Data DEC 15-18,2024 @ Washington DC, USA

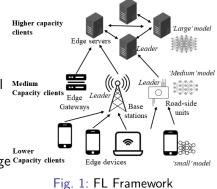
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Federated Learning (FL) enables privacy-preserving distributed training by exchanging minimal information between clients and a central server [1].

In FL, clients receive a *global* model, train locally, and send updates back to the server for aggregation over several rounds.

Challenges in Heterogeneous FL:

- Resource Variability: Different clients (e.g., smartphones, edge servers) have varying computational resources, complicating model aggregation.
- Model Fairness: Weak clients struggle to train large Capacity clients models, risking exclusion and unfairness.



* Layer-wise Model Aggregation

$$heta_{|\mathcal{C}|,\ell}^{t+1} = \sum_{c \in \mathcal{C}} \frac{n_c}{n} heta_{c,\ell}^t \text{ and } heta_{|\mathcal{C}|,\ell_v}^{t+1} = \sum_{c \in \mathcal{C}_v} \frac{n_c}{n_v} heta_{c,\ell_v}^t$$

Calculate momentum $m_{l,k}^t$ using

$$m_{l,k}^t = rac{1}{d_l - d_{l-1} + 1} \sum_{\ell \in [d_{l-1}:d_l]} \Delta_{l,k,\ell}^t$$

* Knowledge distillation using

$$\Delta_{l-1,k,d_{l-1}}^{t+1} = \beta \cdot m_l^t + (1-\beta) \cdot \Delta_{l-1,k,d_{l-1}}^t$$

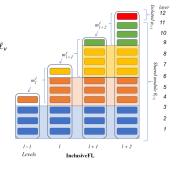


Fig. 2: InclusiveFL [2]

A D > A P > A D > A D >

э

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aggregate fragment with different weights:

$$\theta_{L,1:d_{L}-1}^{t+1} = \underbrace{\sum_{l=1}^{L} \frac{N_{l}}{N} \theta_{l,\ell_{1}}^{t}}_{\underbrace{\theta_{1,1:d_{1}-1}^{t}}_{\theta_{v,1:d_{v}-1}^{t}}} + \dots + \sum_{l=v}^{L} \frac{N_{l}}{N_{v}^{*}} \theta_{l,\ell_{v}}^{t} + \dots + \sum_{l=L-1}^{L} \frac{N_{l}}{N_{L-1}^{*}} \theta_{l,\ell_{L-1}}^{t}}_{\underbrace{\theta_{v,1:d_{v}-1}^{t}}}$$

Methodology: LIFE

School of Computing Science Knowledge & Data Engineering Systems

LIFE Basic Structure

- Leaders at different levels
- Leaders fine-tune their subordinate models
- Aggregation takes place only in neighbouring levels
- Layer-wise Model Aggregation
 + Knowledge distillation

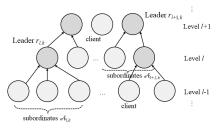
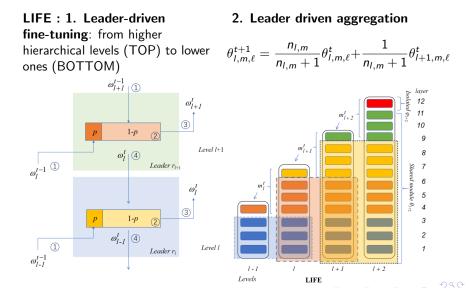


Fig. 3: LIFE Basic Structure

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Datasets & models : RoBERTa-based transformer model (12-layer, 8-layer, and 4-layer) on GLUE (General Language Understanding Evaluation) benchmark.

Experimental setup:

- 1:6:19 and 1:1:1 client ratios
- different skewed label distributions in the non-iid case
 - small clients (Left,a=0.1/a=0.3) & medium clients (Left,a=0.5)
 - small clients (Left,a=0.3) & medium clients (right,a=0.5)

Table 1: Model configuration study: Leader fine-tuning ratio p and T2B vs. B2T Directions (SST2)

Leader Fine-tuning ratio p								
	p = 0.1	<i>p</i> = 0.3	p = 0.5	<i>p</i> = 0.7				
Accuracy	$86.39\% \pm 0.0156$	$86.43\% \pm 0.0193$	$84.72\% \pm 0.0218$	$81.68\% \pm 0.0281$				
LMA rounds T _A								
	$T_A = 1$	$T_A = 3$	$T_A = 5$	$T_{A} = 10$				
Accuracy	$87.12\% \pm 0.0156$	$87.97\% \pm 0.0102$	$87.73\% \pm 0.0085$	$87.69\% \pm 0.0169$				
T2B & B2T Directions								
	T2B-w	T2B-w/o	B2T-w	B2T-w/o				
Accuracy	$82.05\% \pm 0.0897$	$81.98\% \pm 0.0104$	$81.59\% \pm 0.0845$	$81.97\% \pm 0.0102$				

Table 2: Structure comparison (accuracy); SST2

	IID 1:1:1	IID 1:6:19	a=0.1 (S-L/M-L)	a=0.3 (S-L/M-L)	a=0.3 (S-L/M-R)
LIFE	90.02	86.81	90.02	88.53	91.51
InclusiveFL	90.60	81.54	90.00	84.98	91.47
LIFE-M	91.51	85.55	89.99	89.91	91.06
InclusiveFL-M	89.11	82.57	89.07	90.37	90.83
LIFE-S	83.37	81.19	50.92	68.69	80.73
InclusiveFL-S	78.78	79.70	50.89	62.16	77.64

- LIFE's model enhancement on medium and lower levels is outstanding
- Enhancement is more effective when the opposite label distribution is skewed

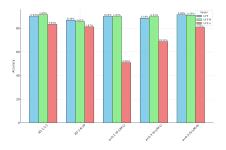


Fig. 4: Visualise Results

(日) (四) (日) (日) (日)

500

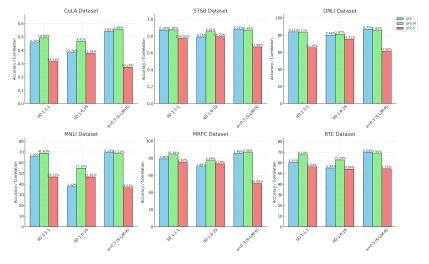


Fig. 5: Comparison. Leader-driven improvement is more effective at the subordinate level

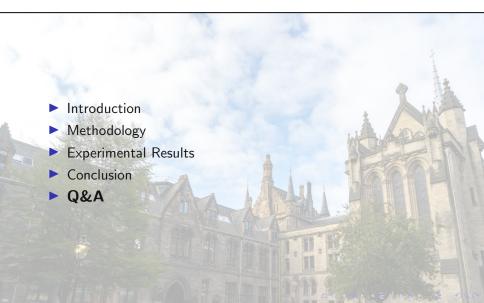
Overall improvement on top, medium, and bottom levels up to 37.4% for CoLA, 58.22% for STSB, 6.8% for QNLI, 23.06% for MNLI, 7.88% for MRPC and 10.43% for RTE.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Impact: LIFE uses leader-driven aggregation and a top-down aggregation order that enhances the overall accuracy of the model, especially in helping weak clients.

Future Work

- Hierarchical model pruning across levels
- Leader election and leader-member matching



Thank you!

References I

- B. e. a. McMahan, "Communication-Efficient Learning of Deep Networks from Decentralized Data," in AISTATS, vol. 54, 2017, pp. 1273–1282.
- R. Liu, F. Wu, C. Wu, Y. Wang, L. Lyu, H. Chen, and X. Xie, "No one left behind: Inclusive federated learning over heterogeneous devices," in 28th ACM SIGKDD, 2022, p. 3398–3406.