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Abstract

We examine the random allocation problem and, adhering to the principle of
favoring higher rank, propose an alternative extension to the probabilistic setting,
which does not rely onwelfare criteria, to eliminate an unfair scenario where agents
who rank objects higher may end up receiving more better objects ex-post also. We
introduce the property of interim favoring support, which is satisfied by the adaptive
BostonMechanism. Additionally, we propose a new fairness criterion, termed equal
support equal claim, which further characterizes the adaptive Boston Mechanism.

Furthermore, we incorporate player 0 into the random allocation framework.
This player, whomay act as a social planner, manager, or mediator, does not receive
any objects but holds incomplete preferences over the resulting allocations based
on the full ordinal preference profile including player 0. We present two guiding
principles to clarify the conditions under which the social planner’s opinion cannot
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be dismissed and when an agent’s opinion must be respected. The first principle
respecting social planner, Make-Full-Use-Efficiently (MFUE), asserts that for any
given object, no agent with a stronger bias should receive the object before those
with weaker bias are satisfied, which strengthens the notion of ordinal efficiency.
The second principle respecting agents, Equal-Bias-Equal-Treatment (EBET), requires
that agents in identical bias positions be treated equally. To fulfil these two fairness
principles, we develop a method to precisely characterize them.

Finally,we introduce anewefficiency concept, interim efficiency,which is stronger
than ex-post Pareto efficiency but weaker than ordinal efficiency. We construct the
Random Flow mechanism to achieve interim efficiency. Experimental analysis
shows that Random Flow results in less envy across preference profiles compared
to the Random Priority mechanism.

1. Introduction

We must allocate n goods to n agents with ordinal preference and use the lottery to
resolve unfairness.

Extension of favoring higher rank and Adaptive BostonMechanism. Inmanyworks, people
assume that agents are justly entitled to acquire objects based on whether they prefer
themmore than others and Kojima and Ünver (2014) first introduce favouring higher rank
to support and characterize Boston mechanism. It states for any school and for any two
students Ann and Bob if Ann ranks this school higher than Bob. Bob receives the seat
of this school only when Ann receives the seat from the school that is better than this
school for Ann. Patrick (2018) provides a natural extension to the probabilistic setting
called Interim Favoring Rank which states for any school, for any two agents Ann and
Bob, if Ann ranks this school higher than Bob. Bob receives the seat from this school
only when Ann receives 0 from the lower counter set of this school. But it will result in
an unfair situation in a probabilistic setting.

1, 2, 3: a1, a2, a4, a3, a5
4,5: a3, a1, a2, a4, a5

TABLE 1. Preference Profile

In Table 1, Interim Favoring Rank stipulates that agents 4 and 5 can receive school
a4 (or objects a1 or a2) only if agents 1, 2, and 3 have received nothing from the lower-
ranked set associated with a4 (or a1 or a2). However, agents 1, 2, and 3 already have
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opportunities to access their top two preferred schools (a1, a2), while agents 4 and 5
only have a chance to secure their top-choice school (a3). Under these circumstances,
is it fair to grant agents 1, 2, and 3 additional priority over a4?

The issue of fairness has been raised before. As noted by Kojima and Ünver (2014),
favouring higher rank is typically viewed as a welfare criterion, yet it has also been
interpreted as a fairness standard by Ramezanian and Feizi (2021). However, it is not fair
enough for a probabilistic setting. In this context, assigning a4 to agents 4 and 5 might
be more equitable, as it would ensure a more balanced distribution of opportunities
across agents to attend schools they prefer. Importantly, this fairness concern does not
arise in deterministic settings, where each agent is allocated only one object.

However, we take fairness criteria and propose the following extension of favouring
higher rank to probabilistic setting: interim favouring support, which states that for any
object a, for any two agents Ann and Bob, if Bob receives fewer objects preferred to a,
then Ann receive this object only when Bob is satisfied at object a.

It is easy to verify this axiom is stronger than ordinal efficiency and most popular
mechanisms not satisfy this axiom such as Random Priority, Probabilistic Serial or
Boston Mechanism, while Adaptive Boston Mechanism satisfies. Bogomolnaia (2015)
introduce it to random allocation problem and show it is ordinally efficient, lexi-envy-free
and lexi-strategy-proof. The reader can realize the Adaptive Boston Mechanism is also
interim favouring support.

Considering the characterisation of ABM, we need one more axiom: equal support
equal claim requires agents to have no incentive to exchange their assignment for this
object. This is stronger than lexi-envy-free. To notice, Chen, Harless, and Jiao (2023)
replace ’support’ with ’rank’ to characterize the Boston Mechanism.

Social planner as the agent. In this extended scenario, we introduce agent 0, who
plays a role in influencing the allocation but does not receive the school placement for
themselves, such as a manager, social planner, or mediator. In this model, we must
allocate n goods to n agents with the classic agents’ ordinal preferences and agent
0’s ordinal preferences. Similarly, we use the lottery to resolve unfairness. From the
whole preference profile (including both classic agents and agent 0), agent 0 forms an
incomplete preference over the pair of (agent, object) and then forms an incomplete
preference over allocations.

It is not only of theoretical interest, but it alsomakes sense to have agent 0—a neutral
party that holds ordinal preferences over objects (in this case, schools)—to ensure fair
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and balanced allocation in many real-world situations.
In the case of COVID-19 vaccine distribution, vaccine type sometimes took prece-

dence over recipient preferences or characteristics due to logistical and public health
priorities. For example, the Pfizer and Moderna mRNA vaccines initially faced distribu-
tion challenges due to their need for ultra-cold storage. This limited their availability
in rural or low-resource areas that lacked such facilities. In these places, viral vector
vaccines, like Johnson & Johnson or AstraZeneca were prioritized for easier distribution
and longer shelf life. Here, the choice of vaccine was driven by the logistical priority
to maximize the reach and efficacy of the distribution campaign, rather than recipi-
ent preference for a particular vaccine type. However, citizens may prefer Pfizer and
Moderna to Johnson & Johnson or AstraZeneca and this can not be neglected as well.

The EU’s Horizon 2020 program, with a budget of €74.3 billion, exemplifies allocation
based on a "priority-based approach" rather than need-based allocation. Key priority
areas, such as "Excellent Science" and "Industrial Leadership," are given precedence,
ensuring top-tier science and innovation sectors receive funds regardless of specific
organizational demand across regions. For example, funds for cutting-edge R&D are
directed primarily to projects aligningwith EU strategic interests, like climate resilience,
energy efficiency, and technological advancements, rather than accommodating re-
gional demand variances.

Examples can also be seen in contexts like college admissions or job placements,
where a social planner or manager plays an important role. For instance, in allocating
students to colleges, a planner may rank colleges based on quality or societal benefit,
considering factors like access, equity, and diversity Salgado-Torres (2013); Xie (2024).

In these scenario, agent 0 does not directly benefit from the allocation but must
ensure that the process considers both fairness and societal preferences. This approach
can help address imbalances where one party may have stronger preferences or better
opportunities, but fairness requires prioritizing others with fewer chances. By intro-
ducing agent 0 with their own rankings of the schools, based on overall objectives (such
as optimizing student outcomes or ensuring equal access), the allocation becomes
more structured and ensures that broader, socially beneficial outcomes are considered
alongside individual preferences. In the college context, for example, agent 0 might
give priority to students from underrepresented backgrounds for top-tier colleges, even
if other students rank those colleges higher because doing so could promote societal
equity.

There are many other examples, such as organ allocation with waiting times (Ash-
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lagi, 2024), dairy food for a food bank (Prendergast (2022)), food rescue services (Ay-
din Alptekinoglu (2023)), and status ranking (Richter and Rubinstein (2024)), among
others.

The critical challenge in balancing the social planner’s willingness (agent 0) and
the individual agents’ preferences lies in determining when collective fairness should
override personal utility. The social planner’s perspective is crucial in situations where
equity, broader societal goals, or systemic externalities are at stake, such as in public
goods distribution, college admissions, or markets where diversity and fairness are
essential. In these cases, prioritizing the planner’s preferences ensures amore equitable
outcome, as ignoring fairness could lead to unequal access or societal inefficiencies.
However, in cases where individual satisfaction and personal utility are the primary
concerns, such as when no major fairness issues exist, agents’ preferences should take
precedence. Overriding individual willingness too often can lead to dissatisfaction,
reduced participation, or even inefficiencies. Thus, the solution lies in finding the right
balance—using the social planner’s influence when fairness and societal goals are at
risk while respecting individual preferences when those concerns are minimal.

Imagine the following preference profile

0: a1, a2, a3, a4, a5, a6
1, 2: a5, a4, a2, a1, a3, a6

3, 4, 5: a2, a4, a1, a3, a5, a6
6: a3, a1, a2, a5, a4, a6

TABLE 2. Preference Profile

Then Agent 0 will construct the incomplete preference over pairs of (agent, object)
after Agent 0 observes the whole preference profile in Table 2.

(6, a1) ≻ (3, a1) ∼ (4, a1) ∼ (5, a1) ≻ (1, a1) ∼ (2, a1)(1)

(3, a2) ∼ (4, a2) ∼ (5, a2) ≻ (1, a2) ∼ (2, a2) ∼ (6, a2)(2)

(6, a3) ≻ (3, a3) ∼ (4, a3) ∼ (5, a3) ≻ (1, a3) ∼ (2, a3)(3)

(1, a4) ∼ (2, a4) ∼ (3, a4) ∼ (4, a4) ∼ (5, a4) ≻ (6, a4)(4)

(1, a5) ∼ (2, a5) ≻ (6, a5) ≻ (3, a5) ∼ (4, a5) ≻ (5, a5)(5)

(1, a6) ∼ (2, a6) ∼ (3, a6) ∼ (4, a6) ∼ (5, a6) ∼ (6, a6)(6)

(7)
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Although Agent 0 has a preference over objects, Agent 0 does not receive any ob-
ject, so how can Agent 0 form a preference over outcomes? We suggest that Agent 0
constructs preferences over outcomes using both first-order stochastic dominance and
a lexicographical relation. First, Agent 0 constructs a preference over the allocation of
each object based onfirst-order stochastic dominance. Then, Agent 0 forms a preference
over the overall allocation using a lexicographical relation.

For example, if we consider the allocation of object a1 (or a3), would Agent 0 have a
preference on how to allocate object a1 among four agents? Yes, Agent 0 might prefer
allocating a1 (or a3) to Agent 6. Further, if Agent 0 holds the preference a1 ≻ a3, then
Agent 0 may favour the allocation where Agent 6 receives a1 over the one where Agent
6 receives a3. Then, the best allocation for Agent 0 is in Table 3

a1 a2 a3 a4 a5 a6
1 0 0 0 0 1

2
1
2

2 0 0 0 0 1
2

1
2

3 0 1
3

1
3

1
3 0 0

4 0 1
3

1
3

1
3 0 0

5 0 1
3

1
3

1
3 0 0

6 1 0 0 0 0 0
TABLE 3. Best for Agent 0

It’s easy to see the conflict between Agent 0 and Agents because Agent 6 will trade
a3 with a1. Is it justice for Agent 0 to reject this objection? We think Agent 0 shouldn’t
reject this because of efficiency. Then Agent 1 and 2 may also reject the allocation of the
object a4, would Agent 0 approve this objection? Agent 0 may not reject this because
Agent 1 and 2 prefer the object a5 to a4. In contrast, Agent 0 prefers a4 to a5, in other
words, Agent 1 and 2 have different concerns about a4 and a5 and these concerns are
not accepted by Agent 0 according to his preference. Then Agent 0 may still give a4 to
Agents 3,4 and 5. Then the allocation after negotiation is more like the Table 4.
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a1 a2 a3 a4 a5 a6
1 0 0 0 0 1

2
1
2

2 0 0 0 0 1
2

1
2

3 1
3

1
3 0 1

3 0 0
4 1

3
1
3 0 1

3 0 0
5 1

3
1
3 0 1

3 0 0
6 0 0 1 0 0 0

TABLE 4. Allocation after negotiation

Then we have the following two principles for the ideal allocation in this model, the
first one is calledMake-Full-Use-Efficiently:

the object should be allocated to the agents who value them in the much
more ’correct’ position corresponding to Agent 0’s preference.

When we refer to an agent who values the object in the muchmore ’correct’ position,
we’re describing an agent who violates the order of objects less and also potentially
receives fewer objects preferred to this object. Also, this is stronger than ordinal effi-
ciency. Similarly, it is natural to require the second property (called Equal bias equal
treatment):

those agents should receive an equal share for fairness.

Therefore, we have three possible outcomes in Table 11.
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a1 a2 a3 a4 a5 a6
1 0 0 0 0 1

2
1
2

2 0 0 0 0 1
2

1
2

3 1
3

1
3 0 1

3 0 0
4 1

3
1
3 0 1

3 0 0
5 1

3
1
3 0 1

3 0 0
6 0 0 1 0 0 0
TABLE 5. MFUE+EBET

a1 a2 a3 a4 a5 a6
1 0 0 0 0 1

2
1
2

2 0 0 0 0 1
2

1
2

3 0 1
3

1
3

1
3 0 0

4 0 1
3

1
3

1
3 0 0

5 0 1
3

1
3

1
3 0 0

6 1 0 0 0 0 0
TABLE 6. Ob-eff + fairness

a1 a2 a3 a4 a5 a6
1 1

5 0 1
30

1
10

1
2

1
6

2 1
5 0 1

30
1
10

1
2

1
6

3 1
5

1
3

1
30

4
15 0 1

6
4 1

5
1
3

1
30

4
15 0 1

6
5 1

5
1
3

1
30

4
15 0 1

6
6 0 0 5

6 0 0 1
6

TABLE 7. PE + fairness

a1 a2 a3 a4 a5 a6
1 3

20 0 1
30

3
20

1
2

1
6

2 3
20 0 1

30
3
20

1
2

1
6

3 7
30

1
3

1
30

7
30 0 1

6
4 7

30
1
3

1
30

7
30 0 1

6
5 7

30
1
3

1
30

7
30 0 1

6
6 0 0 5

6 0 0 1
6

TABLE 8. Truthful Mechanism

a1 a2 a3 a4 a5 a6
1 0 0 0 1

5
1
2

3
10

2 0 0 0 1
5

1
2

3
10

3 1
3

1
3 0 1

5 0 2
15

4 1
3

1
3 0 1

5 0 2
15

5 1
3

1
3 0 1

5 0 2
15

6 0 0 1 0 0 0
TABLE 9. Favoring Rank + fairness

a1 a2 a3 a4 a5 a6
1 1

5 0 0 1
5

1
2

1
10

2 1
5 0 0 1

5
1
2

1
10

3 1
5

1
3 0 1

5 0 4
15

4 1
5

1
3 0 1

5 0 4
15

5 1
5

1
3 0 1

5 0 4
15

6 0 0 1 0 0 0
TABLE 10. Favoring Support + fairness

TABLE 11. Comparison

In this context, an efficient and fair allocation method must consider both Agents
and Agent 0 (Table 5). Now, we propose a simple method to achieve this outcome.
Following Agent 0’s preference, we equally allocate to the agents who prefer the most
according to their capacity. Formally, it is called Flow algorithm:

(a) In round 1, we require the object in the first position of Agent 0’s preference, π(1), to
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appear in the market, then equally allocate them to agents who put them on the top
of the total objects. If not, we add this object in the next position.

(b) In round k, we have the left objects in the previous round and the objects in the
k – th position, π(k). Then we allocate the objects in π(k) to agents who put them at
the top of the remaining objects equally considering their capacity. We keep this
process until no one puts the object in π(k) at the top of the remaining objects or
π(k) is exhausted.

It will return the probabilistic allocation directly and use the lottery between agents
during allocation.

Interim efficiency and Random Flow. In literature, there are two dominant methods to
solve the general problem (without perishability): RandomPriority (RP) (Abdulkadiroğlu
and Sönmez (1998)) 1, and Probabilistic Serial (PS) (Bogomolnaia and Moulin (2001)).

A sequence of agents (termed priority) serves as a natural tool to solve this problem.
The manager sequentially asks agents, based on an exogenous priority, to choose their
most preferred object from the remaining ones. This mechanism is renowned for its
efficiency and incentive compatibility, but it falls short in terms of fairness. To address
this, random priority is employed: the manager randomly determines an ordering and
then queries agents to select their best object from what remains. 2

However, Bogomolnaia and Moulin (2001) shows RP lacks efficiency, namely it is
not ordinally efficient. An assignment is ordinally efficient for some problems if there is
no probabilistic Pareto improvement. Therefore they construct the probabilistic serial.
In this method, the manager directly allocates a divisible probability weight. Agents
simultaneously ’eat’ the probability weight of their most preferred available object at
a uniform rate. Once an object is fully ’eaten’ by some agents, they move on to their
next most preferred yet uneaten object. This process continues until all objects are
completely allocated.

One advantage of ordinal efficiency is that it guarantees any decomposition of ran-
dom allocation is the convex combination of efficient deterministic allocations while
the efficiency of RP only guarantees there exists a convex combination of efficient
deterministic allocations called ex-post Pareto efficiency.

1Also known as random serial dictatorship in literature.
2Recently, RP is shown the unique rule satisfies symmetry,ex-post Pareto efficient, and obvious strategy-

proof.
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We realize there is a natural extension of ex-post Pareto efficiency such that the random
allocation can decompose into a convex combination of probabilistic ordinally effi-
cient allocations. We call it interim efficiency. The interim efficiency is logically squeezed
between ordinal efficiency and ex-post Pareto Efficiency: every ordinally efficient alloca-
tion is ’interim efficient’ and every ’interim efficient’ allocation is Ex-post Pareto efficient
(the converse is not true). Unfortunately, Random Priority is not interim efficient.

We want to propose another more efficient rule that is also easy to practice in reality.
Imprecisely, we randomly generate an order of objects (permutation), π, then run the
Flow algorithm. We can show this method is interim efficient in Table 12. One of the
main assets of this algorithm is that everyone can quickly understand how the method
works as well as RP.

Efficiency Fairness Incentive Compatibility

RF Interim Efficient weakly sd Envy-Free weakly sd Strategy-Proof
RP Ex-post Pareto Efficient weakly sd Envy-Free sd Strategy-Proof

TABLE 12. comparison Between RP and RF

We provide an experimental analysis among existing dominant mechanisms and RF.
In 4 × 4 case, we observed RF generates no-envy in more preference profiles than RP:
RP generates sd-envy-free allocation in 36% of preference profiles while RF generates
sd-envy-free allocation in 48% of preference profiles. It suggests we can design an easy
algorithm based on RF that is superior to RP with efficiency and fairness.

This paper is structured as follows: Section 2 presents the Preliminaries. Section 3
describes the ’Adaptive Boston Mechanism’ and characterization. Section 4 introduces
the order of objects and the new desired properties, the newmethod, and the character-
ization. Section 5 introduces a new notion of efficiency ’interim efficiency’ and Section 6
introduces the Random Flow algorithm with its necessary conditions.

1.1. Literature Review

This project contributes to different questions.

Favor higher ranks and Adaptive Boston Mechanism. Firstly, it proposes an extension of
favoring higher rank (Kojima and Ünver (2014)) by fairness criteria instead of welfare
criteria (such as Patrick (2018), Ramezanian and Feizi (2021), etc.) It’s not hard to imagine
Boston mechanism will not satisfy this property (Chen, Harless, and Jiao (2023)) but
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the Adaptive Boston Mechanism will do. Adaptive Boston Mechanism is well-known
in school choice and has better performance in efficiency and incentive compatibility
than the naive Boston Mechanism, as illustrated by Mennle and Seuken (2014) and
Mennle and Seuken (2021). In this paper, one important classification between the
Boston Mechanism and the adaptive Boston Mechanism is the fundamental difference
between welfare and fairness.

To characterize the adaptive Boston Mechanism, we propose another fairness prop-
erty that is stronger than Lexi-envy-freeness. This also replies to the question in Bo-
gomolnaia (2015): which both ABM is not single out from mechanisms that are Lexi-
efficiency, Lexi-envy-freeness, and Lexi-strategy-proofness.

Mechanism Design for the market with the order of objects. It is not the first work consider-
ing the rank of objects or the order of objects in themarket. It is worth noting two recent
works. Liu and Zeng (2019) provides the algorithm on restricted tier domain, simply the
preference is consistent with public rank.While we do not impose any restriction on the
preference domain. Also, Harless (2019) characterizes all sd-efficient algorithms using
the order-claim-algorithm. Although efficiency is not the only focus of this paper, there is
the same spirit between Harless (2019) and this paper: generating the order of objects
and allocating them efficiently. However, we care about why there is an inconsistency
between preference and initial order not only efficiency, and how to allocate the object
given this inconsistency.

The adaptation of stability in allocation problems always leads to nice axioms in
literature (see Gale and Shapley (1962), Abdulkadiroğlu and Sönmez (2003b)): an object
should not be given to an agent with a lower priority when it is desired by an agent with
a higher priority to it. The natural generalization of stability to probabilistic setting is
introduced by Roth, Rothblum, and Vande Vate (1993) and analyzed further by Kesten
and Ünver (2015) (p552.):

... this notion stipulates that, being the higher priority student, student i
should be granted all the enrollment chance at school c, should he so desire,
before student j is given any chance at this school.

The adaption of stability in allocation problem is called favoring higher rank byKojima
andÜnver (2014) or ex-ante stability byHan (2023). In thiswork,we introduce the order of
objects and give another reasonable way to consider priority in the allocation problem.
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Refinement of Ex-post Pareto Efficiency. Lastly, it is well-known that ordinal efficiency
is stronger than ex-post efficiency and RP is not ordinally efficient. Then it is always
interesting to check the boundary of efficiency for RP and think it happens. Interim
efficiency requires that the random allocation can be decomposed (if there is one) into
a convex combination of ordinally efficient random allocations. It is exactly between
ordinal efficiency and ex-post efficiency and we show RP does not satisfy this property.
3

2. Preliminary

Consider a classic assignment problem with indivisible goods. For any positive integer
x, define [x] = {1, 2, ..., x}. Let N = [n] denote a set of agents, and A = [n] denote a
set of goods. The capacity of each agent and each object is 1. We consider the set of
strict preferences R on A, the representative element is R. We use RN to represent the
preference profile.

A random assignment is a bistochastic P = [ pia]i∈N,a∈A.4 The set of random as-
signments is denoted P. We use Pi to represent the allocation of agent i. A random
assignment rule is a mapping f : RN → P. We use f i(RN) to represent the alloca-
tion/probability that agent i receives under the assignment rule f and use f ia(RN) to
represent the allocation/probability that agent i receives object a under rule f and
preference profile RN .

We define the upper contour set of Ri at an object a ∈ A as U(Ri; a) = {x : xRia} and
weak upper contour set of Ri at an object a ∈ A as U(Ri; a) = U(Ri; a)∪{a}.

For all i, given a preference Ri on A, we call a partial ordering of the set ∆(A) the
stochastic dominance relation associated with Ri and denoted Rsdi if ∀Pi,P

′
i ∈ ∆(A) we

have
PiR

sd
i P

′
i ⇔

∑︁
x∈U(R;a)

Pi ≥
∑︁

x∈U(R;a)
P
′
i,∀a ∈ A.

Given a preference Ri on A, ∀Pi, P
′
i ∈ ∆(A), we say P′

i is stochastically dominated by Pi
for agent i if we have PiRsdi P

′
i and Pi ≠ P

′
i.

3We think there is one open and interesting question: Do interim efficiency and robust ex-post
efficiency imply ordinal efficiency? Robust ex-post efficiency see Aziz et al. (2015) and Ramezanian and
Feizi (2022). Abdulkadiroğlu and Sönmez (2003a) also gives some thoughts on why ex-post efficiency is
not ordinal efficiency: a random assignment is ordinally efficient if and only if for any given feasible
support, each of its subsets is undominated.

4That is, P ∈ [0, 1]N×A and for each i ∈ N and a ∈ A, ∑
b∈A

Pib = 1 and
∑
j ∈N

p j a = 1.
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WedefineP as ordinally efficient ifPi is not stochastically dominated for all i. A random
assignment rule f is ordinally efficient if, for all R ∈ Rn, f (R) is ordinally efficient.

3. Extension of favoring higher rank

We need one definition to introduce the property. Whenever RN , P, i and a, we define
Z(i; a; P) = #{b : b ∈ U(Ri; a), Pib > 0} as the index of a to indicates the number of objects
preferred to a with a positive probability for the agent i.

PROPERTY 1. Interim Favoring Support
For all RN , all a, all i, if Pia > 0, then

∑
x∈U(R j ;a)

P j x = 1 for all j that Z( j ; a; P) < Z(i; a; P).

Property 1 states that whenever an agent i receives a positive share of some object a,
then all agents who receive fewer objects preferred to a than agent i should be satisfied
at object a. Moreover, it is stronger than ordinal efficiency.

Different from Kojima and Ünver (2014) and Patrick (2018), this property entitles
the right of the object to agents based on what they will receive instead of how they
value the object. In the previous example, if one agent (he) ranks one object ahigher
than another (she) but he already receives more objects (possibly) than another, interim
favoring support will allocate a to her while interim favoring rank will allocate a to him.
To notice, Chen, Harless, and Jiao (2023) also replaces Z(i; a; P) with r(i; a), rank of a for
agent i in Ri, in their characterization of Boston Mechanism.

PROPOSITION 1. The property 1 implies Ordinal efficiency.

Now,we start with the Adaptive BostonMechanism in a randomassignment problem.
To provide the formal definition, we need to define: whenever B ⊆ A,N′ ⊆ N, a ∈
B,M(a;B;N′) ≡ {i ∈ N′ : aRib,∀b ∈ B} and m(a;B;N′) = #M(a;B;N′). In words, the
M(a;B;N′) is the set of agents in N′ who put a at the top of B and the set ofM(a;B;N′) is
a partition of N′.

Given a preference profile RN , the Adaptive Boston Mechanism proceeds sequen-
tially. Let A0 = A,N0 = N, let C = [1]N be the capacity of agents, Z = [1]A be the capacity
of objects.

(a) In the first period, for all a ifM(a;A0;N0) ≠ ∅, we fully allocate a toM(a;A0;N0)
and every agent receives shia = 1

m(a;A0;N0) . Then we update capacity Z
1 and C1, the

remaining objects A1, and the agents with positive capacity N1.

13



(b) For each k period, for all a ∈ Ak–1 ifM(a;Ak–1;Nk–1) ≠ ∅, we allocate a to agents
M(a;Ak–1;Nk–1) and every agent receives, for some e:

shia = c
k–1
i ∧ e s.t.

∑︁
i∈M(a;Ak–1;Nk–1)

shia = z
k–1
a ∧

∑︁
i∈M(a;Ak–1;Nk–1)

ck–1i

Then we update capacity Zk and Ck, the remaining objects Ak, and the agents with
positive capacity Nk.

This algorithm will finish in finite periods at most |A| and produce an allocation
matrix sh.

Now we state the second fairness property stronger than Lexi-envy-free: requires
such agents to have no incentive to exchange their assignment for this object also.

PROPERTY 2. Equal Support Equal Claim
For all RN , all a, for all i, j s.t. Z(i; a; P) = Z( j ; a; P), if Pia > P j a > 0 then

∑
x∈U(R j ;a)

P j x =

1.

Given the stick preference Ri : a1Ria2 . . .Rian, we define lexicographic preference
Rl exi over all probability distributions ∆(A): for all p, q ∈ ∆(A), then we say pRl exi q as
long as there is j ∈ {1, ...,n} such that pa j > qa j , while pak = qak for all k < j .

Given an allocation P and preference profile RN , we say it is lexi-envy-free, if for any
agents i and j , we have PiRl exi P j and P j Rl exj Pi.

PROPOSITION 2. Property 2 implies lexi-envy-free.

PROPOSITION 3. A mechanism is the Adaptive Boston mechanism in a random assignment
problem if and only if it satisfies interim favoring support and equal support equal claim.

Then we show interim favoring support and equal support equal claim are indepen-
dent. Moreover, equal claim equal support and ordinal efficiency are not sufficient to
obtain interim favoring support. Interim favoring support and Lexi-envy-free are not
sufficient to obtain equal claim equal support.

PROPOSITION 4.

(a) Lexi-envy-free and interim favoring support do not imply equal support equal claim.

(b) Ordinally efficiency and equal support equal claim do not imply Property interim favoring
support.
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4. Agent 0’s preference and principles

In this section, we consider the main question of this paper: how to allocate the object
if there is Agent 0. We denote π ∈ Π as Agent 0’s strict preference and We denote πa as
the position of a in π, that is #{x : xπa} + 1. Then we say a is in prior position than b in π

if πa < πb.
First, let’s define Agent 0’s preference over allocation. We denote

wr(a;P;M) = (
∑︁

i:r(i;a;P)=1
Mia, ...,

∑︁
i:r(i;a;P)=n

Mia)

Given the allocation M and M′, for any a define wr(a;P;M) | ⊲ wr(a;P;M′) if
k∑
j =1

wr(a;P; j ) ≥
k∑
j =1

wr(a;P; j ) for all k = 1, 2, ...,n. We sayM | ⊲l exM′ if wr(a;P;M) |

⊲ wr(a;P;M′) for some a and wr(b;P;M) = wr(b;P;M′) for all b that πb < πa. We sayM
is ob-efficient if there is noM′ s.t.M′ | ⊲l exM.

LEMMA 1. ob-efficiency and ordinal efficiency are not compatible.

Because ordinal efficiency and ob-efficiency are not compatible, we consider the
properties mentioned in the Introduction. Make-Full-Use-Efficiently (MFUE) says that
the object should be allocated to the agents who value them in the much more ’correct’
position corresponding to Agent 0’s preference. Equal-Bias-Equal-Treatment (EBET)
says that those agents should receive an equal share for fairness.

Now we formally state those two properties. Whenever RN , and a ∈ A we define
C(i; a) = argmax{πx : x ∈ U(Ri; a)} and ∗(i; a) = argmin{π(i; x) : x ∈ C(i; a)} be the peak
before a. Denote ∗(i;A) = {b : ∃a ∈ A, b = ∗(i; a)} be the set of peaks of agent i.

EXAMPLE 1. In the initial example Table 2, let’s focus on Agent 6:
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A

π

a3 a1 a2 a5 a4 a6

3

4

5

6

FIGURE 1. Peaks of agent i in Example 1
Note 1: Red points indicate peaks. x-axis represents objects. y-axis represents the πa.

We have

∗(6; a1) = ∗(6; a3) = ∗(6; a3) = a3, ∗(6; a4) = ∗(6; a5) = a5, ∗(6; a6) = a6.

Then ∗(6;A) = {a3, a5, a6} and a6 is the last peak in Figure 1.

Whenever RN and P, for all i and a ∈ A, we define Û(Ri; a) = {b : ∗(i; a)RibRia}∪ {a}∪
{∗(i; a)}. Then we define Ẑ(i; a;P) = #{b : b ∈ Û(Ri; a),Pib > 0}. For example:

EXAMPLE 2. (Example 1 Cont’d.)
Now assume P6 = ( 15 ,

1
5 , 0,

1
5 ,

1
5 ,

1
5). Then we have:

Ẑ(6; a1; P) = 1, Ẑ(6; a2; P) = 2, Ẑ(6; a3; P) = 0, Ẑ(6; a4; P) = 2, Ẑ(6; a5; P) = 1, Ẑ(6; a6; P) =
1.

Whenever ≻, P, a ∈ A, i, j ∈ N, and Pia > 0 we define

(a) i a−→ j if either π∗(i;a) < π∗( j ;a) or π∗(i;a) = π∗( j ;a) with Ẑ(i; a; p) < Ẑ( j ; a; p).

(b) i ∼ j if π∗(i;a) = π∗( j ;a) and Ẑ(i; a; p) = Ẑ( j ; a; p)

Now we are ready to state the following Properties.

PROPERTY* 1. Make-Full-Use-Efficiently (MFUE)
For all RN , all π, all a, all i, if Pia > 0, then

∑
x∈U(Ri;a)

P j x = 1 for all j that j
a−→ i.

PROPERTY* 2. Equal bias equal treatment (EBET)
For all RN , all π, all a, all i, j s.t. i ∼ j , if Pia > P j a > 0 then

∑
x∈U(R j ;a)

P j x = 1.

PROPOSITION 5. MFUE implies ordinal efficiency.
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4.1. Flow Algorithm

Before defining the newmethod, we define a variant of the Adaptive BostonMechanism
which allocates the subset of objects to agentswith consideration of full preference. Now
given RN ,P,B,A,N, whenever RN is preference profile, P is the matrix, B is to-assign-
objects, A is set of objects, N is set of agents, we define BM(B;A;N) as the constraint
adaptive Boston mechanism in the following sequential procedure. Let the capacity of
objects be Z0 = [1]A – [

∑
i∈N

P0ia]a∈A the capacity of agents be C
0 = [1]N – [

∑
a∈A

Pia]i∈N .

(a) In the first period, for all a ∈ B ifM(a;A0;N0) ≠ ∅, we fully allocate a toM(a;A0;N0)
and every agent receives shia = 1

m(a;A0;N0) . Then we update capacity Z
1 and C1, the

remaining objects A1 and B1, and the agents with positive capacity N1.

(b) For each k period, for all a ∈ Bk–1 ifM(a;Ak–1;Nk–1) ≠ ∅, we allocate a to agents
M(a;Ak–1;Nk–1) and every agent receives, for some e:

shia = ci ∧ e s.t.
∑︁

i∈M(a;Ak–1;Nk–1)
shia = za ∧

∑︁
i∈M(a;Ak–1;Nk–1)

ck–1i

Then we update capacity Zk and Ck, the remaining objects Ak and Bk–1, and the
agents with positive capacity Nk.

This algorithm will finish in finite periods at most |B| and produce an allocation
matrix sh. The Constraint Adaptive Boston Mechanism is the variant Adaptive Boston
Mechanismwhenwe allocate a set of objects B by considering full preference. To notice,
the object in B is not necessary to be fully allocated because it may not be at the top of
unassigned objects in A for all agent i.

Now, we construct an algorithm to satisfy MUFE and EBET. Given a preference
profile RN and π. The algorithm is defined by the sequential procedure. Let A0 = A,N0 =
N,π0 = π,C0 = [1]N , Z0 = [1]A,.

(a) In first period, we run BM(π(1);A0;N0), then update π1 as the set of unassigned
objects in π(1), A1 as the set of unassigned objects in A0, N1 as the set of agents
who do not approach the capacity, C1 as the capacity of agents, Z1 as the capacity of
objects.

(b) For each k period, denote π(k) = π(k)∪πk–1 we run BM(π(k);Ak–1;Nk–1), then update
πk

′, Ak, Nk, Ck, Zk.
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This algorithm is denoted by Fπ and will finish in finite periods. The method is
simple, it allocates the object set by set according to the π, for each set we run the
constraint Adaptive Boston Mechanism until it is fully allocated or no agent prefers it
the most. Now we use the initial example in Table 2 to illustrate this method.

EXAMPLE 3. We consider RN and π in Table 2, then the method works sequentially:

(a) In step 1, allocate the object in π(1) = {a1}. No one prefers a1 to the rest, then a1 passes to
the next period.

(b) In step 2, allocate the object in π(2) ∪ {a1}.

• Agent 3,4,5 prefer a2 and receive 13 each.

• After this, no one prefers a1 to the rest, then a1 passes to the next period.

(c) In step 3, allocate the object in π(3) ∪ {a1}.

• Agent 6 prefers a3 and receive 1.

• After this, no one prefers a1 to the rest, then a1 passes to the next period.

(d) In step 4, allocate the object in π(4) ∪ {a1}.

• Agent 3,4,5 prefer a4 and receive 13 each.

• After Agent 3,4,5 prefer a1 and receive 13 each.

(e) In step 5, allocate the object in π(5). Agent 1,2 prefer a5 and receive 12 each.

(f) In step 6, allocate the object in π(6). Agent 1,2 prefer a6 and receive 12 each.

Then the allocation is in Table 5 compared to the existing algorithms.

PROPOSITION 6. A mechanism is Fπ if and only if it satisfies MFUE and EBET.

5. Interim Efficiency

In random allocation, a randomization device is crucial. Ordinal efficiency (OE) is
important because it ensures that every possible way of breaking down the allocations
is Pareto efficient. In contrast, ex-post Pareto efficiency (EPPE) only requires that an
efficient randomization device exists. Now, we consider an intermediate notion, interim
efficiency (IE), which allows for more efficient randomization devices.
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Given a preference profile RN , let DR denote the set of deterministic efficient
assignments, and PR denote the set of probabilistic ordinally efficient assignments.
The unionDR ∪ PR represents the entire set of efficient assignments.

A random assignment is ex-post Pareto efficient if it can be decomposed into a convex
combination of deterministic efficient assignments, i.e.,

∑K
k=1 λkD

R
k with λk > 0 and

DRk ∈ DR for all k.
A random assignment is ’Interim Efficient’ if it can be decomposed into a convex

combination of probabilistic ordinally efficient assignments, i.e.,
∑K
k=1 λkP

R
k with λk > 0

and PRk ∈ PR for all k.
We will demonstrate that these two notions are distinct, specifically, that ’Interim

Efficient’ refines ex-post Pareto efficiency but is less stringent than ordinal efficiency.

PROPOSITION 7.

(a) Interim Efficiency implies ex-post pareto efficiency, but the converse is not true.

(b) Ordinal Efficiency implies Interim Efficiency, but the converse is not true.

(c) Random Priority is Ex-post Pareto Efficient but not Interim Efficient.

Proposition 7 explains that interim efficiency (IE) is a more refined concept than
ex-post Pareto efficiency (EPPE) but is less demanding than ordinal efficiency (OE).
IE is significant because it permits more types of efficient randomization devices, al-
though it is less strict than OE, which demands efficiency in all possible deterministic
assignments.

6. Random Flow

In this part, we consider methods that are easy to implement in practice, such as
Random Priority, and examine those that are superior to Random Priority in terms of
efficiency (based on axioms) and fairness (based on experiments).

We randomly arrange a series of objects and present them sequentially to the agents.
In each period, we assign objects by the constraint Adaptive Boston Mechanism. If the
object is not assigned or fully assigned, it passes to the next period. Once an agent gets
proportion 1 at all, they exit the process. It will end in |A| periods. This method results
in a random allocation directly.5

5The full description is in the Appendix.
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This is the opposite of Random Priority. We call it Random Flow and we show
Random Flow has better performance in efficiency, called interim efficient (explained
in the next part), which Random Priority does not. Moreover, Random Flow is at least
neutral, weakly strategy-proof, and weakly envy-free.

We denote Π as the set of permutations of A. Given π ∈ Π, we denote Fπ as the flow
algorithm with order π. Then a mechanism is a Random Flow mechanism if for any RN
it selects the allocation:

1
|Π|

∑︁
π∈Π

Fπ(RN)

Remark. In practical scenarios where many agents require a limited number of
valuable items, the Random Flow (RF) mechanism demonstrates superior computa-
tional efficiency compared to the Random Priority method. This efficiency stems from
randomizing the order of objects rather than the order of agents.

6.1. Necessary condition for Random Flow

sd Envy-freeness. A random assignment rule f is sd-Envy-Free if ∀RN ,∀i ∈ N we have
f i(R)Rsdi f j (R),∀ j ≠ i. A random assignment rule is weakly sd-Envy-Free if no agent
strictly prefers someone else’s allocation to himorher, that is f j (RN)Rsdi f i(RN) indicates
f j (RN) = f i(RN), ∀ j ≠ i,∀i ∈ N.

sd strategy-proofness. A random assignment rule is sd-strategy-proof if ∀i ∈ N,∀(Ri)i∈N
and ∀R′ ∈ R, f i(R)Rsdi f i(R

′
i,R–i). A random assignment rule is weakly sd-strategy-proof

if an agent cannot obtain an allocation that strictly stochastic dominates to a true
allocation by telling a lie, that is f j (R

′
i,R–i)R

sd
i f i(RN) indicates f i(R

′
i,R–i) = f i(RN),

∀i ∈ N,∀R′
i ∈ R.

PROPOSITION 8. RF is interim efficient, weakly envy-free, and weakly strategyproof.

6.2. Experimental testing of fairness

For the random allocation problem, we consider two mechanisms: Random Priority
(RP) andRandomFlow (RF), and focus on the property sd-envy-free and ask the question
of which algorithm will generate ’no-envy’ allocation more often. We focus on the case
n = 4 and all preference profiles. We began by selecting unique preference profiles and
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eliminating permutations of rows and columns. Each method was then applied to these
profiles to determine allocations.

Observation: RF generates more sd envy-free allocations than RP.
Figure 2 shows RP generates sd-envy-free allocation in 36% of preference profiles

while RF generates sd-envy-free allocation in 48% of preference profiles which is an
improvement of 12% in RF. Moreover, given the nature of the Flow Algorithm, it is
possible to improve this behavior by designing a more fair and easy-to-implement
algorithm while keeping higher efficiency (interim) in this spirit.

FIGURE 2. Ratio of No-envy for ABM, RP, PS, RF

Observation: RF generates a more equalized allocation than RP and PS in about
60% of profiles.

In comparing RP, PS, and RF, Table 13 displays the percentage of preference profiles
where the rowmethod outperforms the columnmethod. RF generates amore equalized
allocation than RP in about 61.5% of profiles and then PS in roughly 59.7% of profiles.

RP PS RF

RP 0.479 0.289
PS 0.502 0.402
RF 0.615 0.597

TABLE 13. Better Performance for RP, PS, and RF when comparing to RP, PS, and RF

Then we analyze to which extent the RF is more equalized. In Figure 3, we compare
RF and PS across each preference profile. The x-axis represents each preference profile,
while the y-axis represents the variance difference between PS and RF, specifically
calculated as the variance of PS minus the variance of RF. A positive value on the graph
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signifies that the allocation under PS is less equalized than that under RF, and conversely
for negative values. Moreover, in those 59.7% preference profiles, the variance under PS
is much larger than the variance under RF with the maximum 0.047 while in the 40.2%
preference profiles, the variance under RP is much larger than variance under PS with
the maximum 0.01. So we can state that for the preference profile PS is much equalized,
the difference between RF and PS is not large.

FIGURE 3. Difference between PS and RF

7. Conclusion

In conclusion, this paper deals with the random allocation problem when there is the
initial order of objects, for example, allocating perishable goods to agents, or allocating
students to tire structure schools, etc. When the agent’s personal preference is incon-
sistent with the initial order, we provide the criteria (stronger than ordinal efficiency)
that: an object, a, should not be given to a ’heavily-biased agent’ when the ’less-biased
agent’ is still available. Moreover, the natural fairness criteria come out (stronger than
Lexi-Envy-free): all such agents with the same ’bias’ to the object should have an equal
chance to the object.

It is worth noting that when every object is at the same position in the order, it is
reduced to the property called interim favoring support and equal support equal claim
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which can characterize Adaptive Boston Mechanism. To notice, Chen, Harless, and
Jiao (2023) replace the notion of ’availability’ with ’rank in preference’ to characterize
the Boston Mechanism. Moreover, to characterize the property when every object is
not at the same position in the order, we propose the new simple method, FRD (Flow
algorithm with rank dominance).

Lastly, we consider constructing a more efficient algorithm that is still easy to play
and easy to understand by agents. Simply, we uniformly randomize the Flow algorithm,
called Random Flow (RF in short). And it satisfies a new notion of efficiency, ’Interim
Efficient’. ’Interim Efficient’ requires the random allocation can decompose into a convex
combination of probabilistic ordinally efficient allocations. The Interim Efficiency is
logically squeezed between ordinal efficiency and ex-post Pareto Efficiency: every
ordinally efficient allocation is ’Interim Efficient’ and every ’Interim Efficient’ allocation is
Ex-post Pareto efficient (the converse is not true). We show Random Flow is ea interim
efficient while Random Priority is not. However, RF is not strategy-proof, but weakly
strategy-proof.

Besides the axiomatic analysis, we provide an experimental analysis of existing
mechanisms. We observed RF generates no-envy in more preference profiles than RP
with an improvement of 12%. From these observations, we can design and apply an
easy-to-play algorithm following this spirit that is superior to RP with efficiency and
fairness.
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Appendix A. Proof for Relation between New axioms and Classic
Axioms

A.1. Proof for Proposition 1

PROOF. We show if the allocation is not ordinally efficient, then it violates Property 1.
Fix preference profile RN and assume the allocation P is not ordinally efficient, then
there exists a (probabilistic) improvement circle τ that akτikak+1 if and only if akRikak+1
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and Pikak+1 > 0.
a1τi1a2 . . . anτinan+1

We denote an+1 = a1. Now we define Z(iK; aK+1;P) = maxnk=1{Z(ik; ak+1;P)}. We have
Z(iK; aK+1;P) ≥ Z(iK+1; aK+2;P) > Z(iK+1; aK+1;P). However,

∑
x∈Ū(RiK+1 ,aK+1)

Pik+1x ≤ 1 –

PiK+1aK+2 < 1 which violate Property 1. □

A.2. Proof for Proposition 2

PROOF. Fix preference profile RN and assume the allocation P is not lexi-envy-free, then
there exist agent i with the preference a1Ria2 . . .Rian and agent j and the number K ∈
{1, ...,n} such that PiaK < P j aK , while Piak = P j ak for all k < K. If Z(i; aK;P) = Z( j : aK;P),
we have

∑
x∈Ū(Ri,aK)

Pix <
∑

x∈U(R j ,aK)
P j x + P j aK ≤ 1, which violate the Property 2.

□

A.3. Proof for Proposition 4

PROOF. (a) Consider the preference profile:

1, 2 : abcd; 3, 4 : bacd

And the allocation:
1, 2 : (

1
2
, 0,

1
3
,
1
6
)

3, 4 : (0,
1
2
,
1
6
,
1
3
)

The allocation does not violate lexi-envy-free and Property 1, but violates Property 2
because P1c > P3c > 0 but agent 3 does not satisfy with the Ū(R3; c).

(b) Consider the preference profile:

1, 2 : abcd; 3, 4 : bacd

And the allocation:
1, 2 : (

1
2
,
1
4
,
1
4
, 0)

3, 4 : (0,
1
4
,
1
4
,
1
2
)
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The allocation does not violate ordinally efficient, Property 2, but violates Property 1
because P1b > 0 but agent 3,4 do not satisfy with b.

□

A.4. Proof for Proposition ??

PROOF. We show if the allocation is not ordinally efficient, then it violates Property 1.
Fix preference profile RN and assume the allocation P is not ordinally efficient, then
there exists a (probabilistic) improvement circle τ that akτikak+1 if and only if akRikak+1
and Pikak+1 > 0.

a1τi1a2 . . . anτinan+1

We denote an+1 = a1. Now we define Z(iK; aK+1;P) = maxnk=1{Z(ik; ak+1;P)}. We have
Z(iK; aK+1;P) ≥ Z(iK+1; aK+2;P) > Z(iK+1; aK+1;P). However,

∑
x∈Ū(RiK+1 ,aK+1)

Pik+1x ≤ 1 –

PiK+1aK+2 < 1 which violate Property 1. □

Appendix B. Characterization of Adaptive BostonMechanism:
Proposition 3

Whenever RN , a ∈ A and P ∈ P, we define Na = {i ∈ N : Pia > 0} be the set of agents who
receive a and Nwisha = {i ∈ N : Pia = 0 and ∃x, aRix, s.t. Pix > 0} be the set of agents who
wish to receive a to by replacing with other objects if it is possible.

PROPOSITION A1. If an allocation satisfies Property 1, then for all RN , all a,

(a) max
i∈Na

Z(i; a;P) ≤ min
i∈Nwisha

Z(i; a;P).

(b) For all i, Pia = 0 and
∑

x∈U(Ri;a)
Pix < 1⇒

∑
j :Z( j ;a;P)≤Z(i;a;P)

P j a = 1.

PROOF.

LEMMA A1. Condition (a) and Condition (b) are equivalent.
⇒Fix RN and a, and assume P satisfies condition (a). Pick i ∈ Nwisha , then we have∑

j :Z( j ;a;P)≤Z(i;a;P)
P j a =

∑
j ∈Na

P j a + 0 = 1.

⇐ Pick i∗ = arg min
i∈Nwisha

Z(i; a;P), then we have
∑
j ∈Na

P j a = 1. Condition (b) implies

Na ⊆ { j : Z( j ; a;P) ≤ Z(i∗; a;P)} and max
i∈Na

Z(i; a;P) ≤ min
i∈Nwisha

Z(i; a;P).
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LEMMA A2. For all RN , all a, all i, if an allocation satisfies Property 1, thenmax
i∈Na

Z(i; a; P) ≤

min
i∈Nwisha

Z(i; a;P).

Fix RN and P, we have Nwisha and Na. Pick i∗ = argmax
i∈Na

Z(i; a; P). We show Z(i; a; P) ≥

Z(i∗; a;P) for all i ∈ Nwisha . Suppose not, then exist i ∈ Nwisha that Z(i; a;P) < Z(i∗; a;P),
then by Property 1, we have

∑
x∈Ū(Ri;a)

Pix = 1 which contradict to the fact that i ∈ Nwisha .

Then it implies max
i∈Na

Z(i; a;P) ≤ min
i∈Nwisha

Z(i; a;P).

□

PROOF. Now, given RN we denote P∗ as the assignment of Adaptive Boston Mechanism
and denote P as the assignment satisfies Property 2 and Property 1. Now we show, for
all i, all a we have Pia = P∗ia. At first, we show for all i and ∀a that Z(i; a;P) = 1, then
Pia = P∗ia.

We suppose there exists agent i that Pia < P∗ia. There are two cases: Pia > 0 or Pia = 0.
Claim 1.1: For all i and ∀a that Z(i; a;P) = 1 and Pia > 0, then Pia = P∗ia.
Property 2 implies Pia = P j a > 0 for all j that Z( j ; a;P) = 1, then it also implies

r( j ; a) = 1. The Property 2 implies Pia = P j a < P∗ia = P
∗
j a,∀i, j that r(i; a) = r( j ; a) = 1,

which means
∑

i:(r(i;a)=1
Pia <

∑
i:(r(i;a)=1

P∗ia ≤ 1. Then Property 1 implies ∀i that r(i; a) = 1,

Pia = 1, which is a contradiction. Then we conclude Pia = P∗ia. The case Pia > P
∗
ia is

symmetry.
Claim 1.2: For all i and ∀a that Z(i; a;P) = 1 and Pia = 0, then Pia = P∗ia.
If Pia = 0, Property 1 implies either

∑
k:Z(k;a;P)≤1

Pka = 1 or
∑

x∈U(Ri;a)
Pix = 1. The latter

and Claim 1.1 implies P∗ia = Pia = 0. Now if
∑

x∈U(Ri;a)
Pix < 1, then a is fully allocated to

agents who rank a in the top, namely for all j who r( j ; a) = 1. By Claim 1.1, we know
P j a = P∗j a for all j , r( j ; a) = 1. Then it implies Pia = 1 –

∑
k:Z(k;a;P)≤1

Pka = 0 = P∗ia
We conclude for all i and ∀a that Z(i; a;P) = 1, then Pia = P∗ia.
Now assume for all i and all a that Z(i; a;P) = z, we have Pia = P∗ia for z = 1, .., k – 1,

we show for all i and all a that Z(i; a;P) = k, then Pia = P∗ia. By contradiction, suppose,
there exists agent i such that Pia < P∗ia. Again, there are two cases Pia > 0 or Pia = 0.

Claim 2.1: For all i and ∀a that Z(i; a;P) = k and Pia > 0, then Pia = P∗ia.
There are two cases:

(a) If Pia = P j a for all j that Z( j ; a;P) = k. Then we have Pia = P j a < P∗ia = P
∗
j a for all
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j that Z( j ; a;P) = k. It implies
∑

i:Z(i;a;P)≤k
Pia <

∑
i:Z(i;a;P)≤k

P∗ia ≤ 1. Then Property 1

implies
∑

x∈U(Ri;a)
Pix = 1 for all i that Z( j ; a;P) ≤ k. However, we have

∑︁
x∈U(Ri;a)

Pix =
∑︁

x∈U(Ri;a)
Pix + Pia =

∑︁
x∈U(Ri;a)

P∗ix + Pia <
∑︁

x∈U(Ri;a)
P∗ix ≤ 1

Which is a contradiction. Then P∗ia = P
∗
ia.

(b) If there exists j that Pia > P j a. Property 2 implies∑︁
x∈U(R j ;a)

P j x + P j a =
∑︁

x:Z( j ;x;P)<k
P∗j x + P j a = 1.

Now suppose P∗j a < P j a (it can not be P
∗
j a > P j a), then we have P

∗
ia > Pia > P j a > P

∗
j a.

By Property 2, we have
∑

x∈U(R j ;a)
P∗j x + P

∗
j a = 1, then P∗j a = P j a, a contradiction.

Therefore, we have P∗j a = P j a. Consider agent i, we have∑︁
i:Z(i;a;P)≤k

Pia <
∑︁

i:Z(i;a;P)≤k
P∗ia ≤ 1 and

∑︁
x∈U(Ri;a)

Pix <
∑︁

x∈U(Ri;a)
P∗ix ≤ 1

which is a contradiction. Then we have Pia = P∗ia.

Then we conclude Pia = P∗ia for all i and ∀a that Z(i; a;P) = k and Pia > 0.
Claim 2.2: For all i and ∀a that Z(i; a;P) = k and Pia = 0, then Pia = P∗ia.
By Property 1, we have either

∑
x∈U(Ri;a)

Pix = 1 or
∑

j :Z( j ;a;P)≤Z(i;a;P)
P j a = 1.

•
∑

x∈U(Ri;a)
Pix = 1 implies

∑
x∈U(Ri;a)

P∗ix =
∑

x∈U(Ri;a)
Pix = 1, then P∗ia = Pia = 0.

•
∑

j :Z( j ;a;P)≤Z(i;a;P)
P j a = 1 and Claim 2.1 states for all i that Z(i; a;P) = k and 0 < Pia we

have Pia = P∗ia. Therefore∑︁
j :Z( j ;a;P)≤Z(i;a;P)

P∗j a =
∑︁

j :Z( j ;a;P)≤Z(i;a;P)
P j a = 1.⇒ P∗ia = 0

Then we conclude Pia = P∗ia for all i and ∀a. We complete the proof. For necessity, it
exactly follows the definition.

□
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Appendix C. Characterization of FRD: Proposition 6

PROOF. Whenever ≻, P, a ∈ A, i, j ∈ N, and Pia > 0 we define i
a
=⇒ j if either i a−→ j or

i ∼ j .
Whenever RN , a ∈ A and P ∈ P, we define Na = {i ∈ N : Pia > 0} be the set of agents

who receive a and Nwisha = {i ∈ N : Pia = 0 and ∃x, aRix, s.t. Pix > 0} be the set of agents
who wish to receive a to by replacing with other objects if it is possible.

LEMMA A3. If Property 1 holds, then [Pia = 0 and
∑

x∈U(Ri;a)
Pix < 1]⇒

∑
j : j

a
=⇒i

P j a = 1.

PROOF. We show j
a
=⇒ i for all i ∈ Nwisha and for all j ∈ Na, which implies a is full

distributed among agents j
a
=⇒ i whenever i ∈ Nwisha , thus complete the proof. Pick

j ∗ ∈ Na with the highest Z(i; a;P) among agents who have he highest π∗̄(a).
Suppose not, there exist i ∈ Nwisha that i a−→ j ∗. By Property 1, we have

∑
x∈Ū(Ri;a)

Pix = 1

which violate the fact that i ∈ Nwisha . □

To prove the theorem, we need a few notations.
Given ∗(i;A), ∗(i; a) is called the last peak for agent i when for all b ∈ L(i; ∗(i; a)) that

∗(i; b) = ∗(i; a). L(Ri; a) is the weak lower counter set of a for agent i under Ri. If ∗(i; a) is
not the last peak we denote ∗(i; a) as the peak immediately after a, namely there exists b
with smallest r(i; b) that ∗(i; b) ≠ ∗(i; a). Then we define ∗(i; a) as the set containing a as
following:

(a) ∗(i; a) = {b : r(i; ∗(i; a)) ≤ r(i; b) < r(i; ∗(i; a))} if ∗(i; a) is not last peak.

(b) ∗(i; a) = {b : r(i; ∗(i; a)) ≤ r(i; b) ≤ |A|} if ∗(i; a) is last peak.

Whenever RN , we define π1 = min{πx : x ∈ ∪
i∈N

∗(i;A)} as the rank of minimal peak,

and πk = min{πx : x ∈ ∪
i∈N

∗(i;A),πx > πk–1} as the rank of k – th peak. Then, given RN ,

there is the largest rank πK. For each πk, we define I(πk) = {i : ∃b, ∗(i; b) ∈ π(πk)} be the
set of agents who have one peak b ∈ π(πk). Then for all i ∈ I(πk), we denote the peak as
aki .

Now, given RN we denote Pπ = F(RN) and denote P as the assignment satisfies
Property* 2 and Property* 1 that P ≠ Pπ.

Claim 1: For all i ∈ I(π1), ∀a ∈ ∗(i; a1i ) we have Pia = P
π
ia.
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This is easily obtained from the Proposition 3. People who are familiar with Proof of
Proposition 3 can jump to Claim 2.

Claim 1.1: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = 1, then Pia = Pπia.
We suppose there exists agent i that Pia < Pπia. There are two cases: Pia > 0 or Pia = 0.
Claim 1.1.1: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = 1 and Pia > 0, then Pia = Pπia.
Property* 2 implies if Pia = P j a > 0 for all j that Ẑ( j ; a; p) = 1, then it also implies

r( j ; a) = 1. The Property* 2 implies Pia = P j a < Pπia = P
π
j a,∀i, j that r(i; a) = r( j ; a) = 1,

which means
∑

i:(r(i;a)=1
Pia <

∑
i:(r(i;a)=1

Pπia ≤ 1. Then Property* 1 implies ∀i that r(i; a) = 1,

Pia = 1, which is a contradiction. Then we conclude Pia = Pπia. The case Pia > P
π
ia is

symmetry.
Claim 1.1.2: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = 1 and Pia = 0, then Pia = Pπia.
By Property* 1, if Pia = 0, then either

∑
x∈U(Ri;a)

Pix = 1 or
∑

j : j
a
=⇒i

P j a = 1. The former

one implies P∗ia = 0 = Pix immediately. If
∑

x∈U(Ri;a)
Pix < 1, then amust be fully allocated

to agents who rank a in the top, namely for all j , r( j ; a) = 1. By Claim 1.1, we know
P j a = Pπj a for all j , r( j ; a) = 1 . Then it implies P

π
ia = Pia = 0.

Now assume for all For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = z, we have Pia = Pπia for
z = 1, .., k – 1, we show for all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = k, then Pia = Pπia.

Claim 1.2: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = k, then Pia = Pπia.
Claim 1.2.1: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = k and Pia > 0, then Pia = Pπia.
By contradiction, suppose, Pia < Pπia. Again, Pia > P

π
ia is symmetric. There are two

cases:

(a) If Pia = P j a for all j that Ẑ( j ; a; p) = k. Then we have Pia = P j a < Pπia = P
π
j a for all j

that Ẑ( j ; a; p) = k. It implies
∑

i:Ẑ(i;a; p)≤k
Pia <

∑
i:Ẑ(i;a; p)≤k

Pπia and
∑

x∈U(Ri;a)
Pix = 1 for all

i that Ẑ( j ; a; p) ≤ k. However, we have

∑︁
x∈U(Ri;a)

Pix =
∑︁

x∈U(Ri;a)
Pix + Pia =

∑︁
x∈U(Ri;a)

Pπix + Pia <
∑︁

x∈U(Ri;a)
Pπix ≤ 1

Which is a contradiction. Then Pπia = P
π
ia for all all i that Ẑ( j ; a; p) = k if Pia = P j a for

all j that Ẑ( j ; a; p) = k.

(b) If there exists j thatPia > P j a. Property* 2 implies
∑

x∈U(R j ;a)
P j x+P j a =

∑
x:Z( j ;x;P)<k

Pπj x+

30



P j a = 1. Now suppose Pπj a < P j a (it can not be P
π
j a > P j a), then we have P

π
ia > Pia >

P j a > Pπj a. By Property* 2, we have
∑

x∈U(R j ;a)
Pπj x + P

π
j a = 1, then Pπj a = P j a, a

contradiction. Therefore, we have Pπj a = P j a. Now for i, we have
∑

i:Ẑ(i;a; p)≤k
Pia <∑

i:Ẑ(i;a; p)≤k
Pπia ≤ 1 and

∑
x∈U(Ri;a)

Pix <
∑

x∈U(Ri;a)
Pπix ≤ 1 , which is a contradiction. Then

we have Pia = Pπia.

Then we conclude Pia = Pπia for all i ∈ I(π
1) and ∀a that Ẑ(i; a; p) = k and Pia > 0.

Claim 1.2.2: For all i ∈ I(π1) and ∀a that Ẑ(i; a; p) = k and Pia = 0, then Pia = Pπia.
By Property* 1, if

∑
x∈U(Ri;a)

< 1 (otherwise, P∗ia = Pia = 0), we have
∑

j : j
a
=⇒i

P j a = 1 and

Claim 1.2.1 states 0 < Pia = Pπia for all i that Ẑ(i; a; p) = k, also Pia = P
π
ia for all i that

Ẑ(i; a; p) = j for all j = 1, ..., k – 1. Therefore
∑

j : j
a
=⇒i

Pπj a =
∑

j : j
a
=⇒i

P j a = 1. It implies

Pπia = 0.
Then we conclude Pia = Pπia for all i ∈ I(π

1) and ∀a ∈ ∗(i; a1i ).
Claim 2: Assume for all i ∈ I(πz), ∀a ∈ ∗(i; azi ) we have Pia = P

π
ia for all z = 1, ..., k – 1,

then we show i ∈ I(πk), ∀a ∈ ∗(i; aki ) we have Pia = P
π
ia.

Claim 2.1: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = 1, then Pia = Pπia.
We suppose there exists agent i that Pia < Pπia. There are two cases: Pia > 0 or Pia = 0.
Claim 2.1.1: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = 1 and Pia > 0, then Pia = Pπia.
There are two cases:

(a) If Pia = P j a for all j that Ẑ( j ; a; p) = 1. Then we have Pia = P j a < Pπia = P
π
j a for all

j that Ẑ( j ; a; p) = 1. It implies
∑
i
Pia <

∑
i
Pπia ≤ 1 and

∑
x∈U(Ri;a)

Pix = 1 for all i that

Ẑ(i; a; p) = 1. However, we have

∑︁
x∈U(Ri;a)

Pix =
∑︁

x∈ ∪
z<k

∗(i;azi )
Pix + Pia =

∑︁
x∈ ∪

z<k
∗(i;azi )

Pπix + Pia <
∑︁

x∈U(Ri;a)
Pπix ≤ 1

Which is a contradiction. Then Pπia = P
π
ia for all all i that Ẑ( j ; a; p) = 1 if Pia = P j a for

all j that Ẑ( j ; a; p) = 1.
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(b) If there exists j that Pia > P j a. Property* 2 implies∑︁
x∈U(R j ;a)

P j x + P j a =
∑︁

x∈ ∪
z<k

∗( j ;azj )
P j x + P j a =

∑︁
x∈ ∪

z<k
∗( j ;azj )

Pπj x + P j a = 1

Now suppose Pπj a < P j a (it can not be P
π
j a > P j a), then we have P

π
ia > Pia > P j a > P

π
j a.

By Property* 2, we have
∑

x∈U(R j ;a)
Pπj x + P

π
j a = 1, then P

π
j a = P j a, a contradiction.

Therefore, we have Pπj a = P j a.

Now for i, we have

∑︁
i∈ ∪
z<k

I(πz)
Pia +

∑︁
i∈I(πk),Ẑ(i;a; p)=1

Pia =
∑︁

i∈ ∪
z<k

I(πz)
Pπia +

∑︁
i∈I(πk),Ẑ(i;a; p)=1

Pia < 1

which is a contradiction. Then we have Pia = Pπia.

Then we conclude Pia = Pπia for all i ∈ I(π
k) and ∀a that Ẑ(i; a; p) = 1 and Pia > 0.

Claim 2.1.2: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = 1 and Pia = 0, then Pia = Pπia.
By Property* 1, if

∑
x∈U(Ri;a)

< 1 (otherwise, P∗ia = Pia = 0), we have
∑

j : j
a
=⇒i

P j a = 1 and

Claim 2.1.1 states 0 < Pia = Pπia for all i that i ∈ I(π
k) and Ẑ(i; a; p) = 1, also Pia = Pπia for

all i that i ∈ I(πz) for all z = 1, ..., k – 1. Therefore ∑
j : j

a
=⇒i

Pπj a =
∑

j : j
a
=⇒i

P j a = 1. It implies

Pπia = 0.
Now assume for all For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = z, then Pia = Pπia for

z = 1, ..,m – 1, we show for all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = m, then Pia = Pπia.
Claim 2.2: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = m, then Pia = Pπia.
Claim 2.2.1: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = m and Pia > 0, then Pia = Pπia.
By contradiction, suppose, Pia < Pπia. Then there are two cases:

(a) If Pia = P j a for all j that Ẑ( j ; a; p) = m. Then we have Pia = P j a < Pπia = P
π
j a for all

j that Ẑ( j ; a; p) = m. It implies
∑
i
Pia <

∑
i
Pπia ≤ 1 and

∑
x∈U(Ri;a)

Pix = 1 for all i that

Ẑ( j ; a; p) = m. However, we have
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∑︁
x∈U(Ri;a)

Pix =
∑︁

x∈ ∪
z<k

∗(i;azi )
Pix +

∑︁
x∈∗(i;aki ),Z(i;x;P)<m

Pix + Pia

=
∑︁

x∈ ∪
z<k

∗(i;azi )
Pπix +

∑︁
x∈∗(i;aki ),Z(i;x;P)<m

Pπix + Pia

<
∑︁

x∈U(Ri;a)
Pπix ≤ 1

Which is a contradiction. Then Pπia = P
π
ia for all all i that Ẑ( j ; a; p) = m if Pia = P j a for

all j that Ẑ( j ; a; p) = m.

(b) If there exists j that Pia > P j a. Property* 2 implies

∑︁
x∈U(R j ;a)

P j x =
∑︁

x∈ ∪
z<k

∗( j ;azj )
P j x +

∑︁
x∈∗( j ;aki ),Z( j ;x;P)<m

P j x + P j a

=
∑︁

x∈ ∪
z<k

∗( j ;azj )
Pπj x +

∑︁
x∈∗( j ;akj ),Z( j ;x;P)<m

Pπj x + P j a = 1

Now suppose Pπj a < P j a, then we have P
π
ia > Pia > P j a > P

π
j a. By Property* 2, we have∑

x∈ ∪
z<k

∗( j ;azj )
Pπj x +

∑
x∈∗( j ;akj ),Z( j ;x;P)<m

Pπj x + P
π
j a = 1, then P

π
j a = P j a, a contradiction.

Therefore, we have Pπj a = P j a.

Now for i, we have∑︁
i∈ ∪
z<k

I(πz)
Pia +

∑︁
i∈I(πk),Z(i;a;P)<m

Pia +
∑︁

i∈I(πk),Ẑ(i;a; p)=m
Pia

=
∑︁

i∈ ∪
z<k

I(πz)
Pπia +

∑︁
i∈I(πk),Ẑ(i;a; p)<m

Pπia +
∑︁

i∈I(πk),Ẑ(i;a; p)=m
Pia < 1

which is a contradiction. Then we have Pia = Pπia.

Then we conclude Pia = Pπia for all i ∈ I(π
k) and ∀a that Ẑ(i; a; p) = m and Pia > 0.

Claim 2.2.2: For all i ∈ I(πk) and ∀a that Ẑ(i; a; p) = m and Pia = 0, then Pia = Pπia.
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By Property* 1, if
∑

x∈U(Ri;a)
< 1 (otherwise, P∗ia = Pia = 0), we have

∑
j : j

a
=⇒i

P j a = 1

and Claim 2.2.1 states Pia = Pπia for all i ∈ I(πk) that Ẑ(i; a; p) < m, and 0 < Pia = Pπia
for all i ∈ I(πk) that Ẑ(i; a; p) = m, and for all i ∈ I(πz) for all z = 1, ..., k – 1. Therefore∑
j : j

a
=⇒i

Pπj a =
∑

j : j
a
=⇒i

P j a = 1. It implies Pπia = 0.

Then we conclude Pia = Pπia for all i ∈ I(π
k) and ∀a ∈ ∗(i; aki ). We complete the proof.

For necessity, it exactly follows the definition of Fπ.
□

Appendix D. Proof for Proposition 7

PROOF. (a) Consider Example 1:

’Interim Efficient’ requires a random assignment that can be decomposed into a
convex combination of ordinally efficient random assignments, then it is ex-post
Pareto efficient. Now we show the converse is not true.

EXAMPLE 1. Assume there are 4 agents and 4 objects, and the preference profile is the
following:

1: acbd

2: adbc

3: bcad

4: bdac

(A1)

Consider a random assignment

a b c d
1 1

2 0 1
2 0

2 1
2 0 0 1

2
3 0 1

2 0 1
2

4 0 1
2

1
2 0

There are only two deterministic assignments, and it is easy to check those two are efficient
because they could be represented by a priority order (1 2 3 4) and (2 1 4 3):
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a b c d
1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d
1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

TABLE A1. Two deterministic assignments

Also, this random assignment can’t be decomposed into the convex combination of proba-
bilistic ordinally efficient assignments because all ’0’ should be unchanged after convex
combination, then agent 3 will trade object ’d’ with agent 4 for object ’c’, therefore this
random assignment is ex-post Pareto efficient, not ’Interim Efficient’.

(b) Consider Example 2:

EXAMPLE 2. Assume there are 4 agents and 4 objects, and the preference profile is the
following:

1,2: badc

3,4: abcd
(A2)

Consider a random assignment

a b c d
1 1

8
3
8

1
8

3
8

2 1
8

3
8

1
8

3
8

3 3
8

1
8

3
8

1
8

4 3
8

1
8

3
8

1
8

It is the average of ordinally efficient random assignments of:

a b c d
1 1

4
1
2 0 1

4
2 1

4
1
2 0 1

4
3 1

4 0 1
2

1
4

4 1
4 0 1

2
1
4

a b c d
1 0 1

4
1
4

1
2

2 0 1
4

1
4

1
2

3 1
2

1
4

1
4 0

4 1
2

1
4

1
4 0

TABLE A2. Two Random assignments

But this random assignment is not ordinally efficient.
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1: adbc
2: acbd
3: abdc
4: abcd

TABLE A3. RN

a b c d
1 1

4 0 1
24

17
24

2 1
4 0 17

24
1
24

3 1
4

1
2

1
12

1
6

4 1
4

1
2

1
6

1
12

TABLE A4. Allocation of RP

TABLE A5. Violation of ’Interim Efficient’: RP

(c) Consider the preference profile:

In this preference profile, if P is ordinally efficient, then

(i) If P1c > 0, then P2d = P4d = 0.

(ii) If P4d > 0, then P1c = P3c = 0.

a b c d
1 0 +
2 0 0
3
4 0

a b c d
1 0 0
2 0
3 0
4 +

TABLE A6. Two possibility

Then we try to construct the support of random assignment in Table A5 such that
the Table A6 must be satisfied. In the end, we will have a contradiction.

Claim 1: Now, suppose P1c > 0, then it must be Table A7 with the weight 1
24 :

a b c d

1 0 0 1 0
2 1 0 0 0
3 0 0 0 1
4 0 1 0 0

TABLE A7. Possible deterministic assignments when P1c > 0

Claim 2: Suppose P4d > 0, then it must be Table A8 with weight 1
12 .
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a b c d

1 1 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 0 0 1

TABLE A8. Possible deterministic assignments when P4d > 0

Now, we have:

a b c d

1 1
12 0 1

24 0
2 1

24 0 1
12 0

3 0 1
12 0 1

24
4 0 1

24 0 1
12

TABLE A9. 1
12 Table A8+

1
24 Table A7

Given Table A5 and Table A9, we know the support of Table A5 must contains
following deterministic assignments:

(i) When P1a = 1:

a b c d

1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d

1 1 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 0

TABLE A10. Total Weight 1
24

and
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a b c d

1 1 0 0 0
2 0 0 1 0
3 0 0 0 1
4 0 1 0 0

TABLE A11. With Wight 18

(ii) When P1d = 1:

a b c d

1 0 0 0 1
2 1 0 0 0
3 0 0 1 0
4 0 1 0 0

a b c d

1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

TABLE A12. Total Weight 5
24

and

a b c d

1 0 0 0 1
2 0 0 1 0
3 0 1 0 0
4 1 0 0 0

a b c d

1 0 0 0 1
2 0 0 1 0
3 1 0 0 0
4 0 1 0 0

TABLE A13. Wight with 1
4 each

Now because P4a = 1
4 in Table A5, then we know the third deterministic assignment

of Table A13 must weight 14 . And P3d =
1
6 implies Table A11 must be weight

1
8 =

1
6 –

1
24 .

Then we have
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a b c d

1 5
24 0 1

24
1
2

2 1
24 0 17

24 0
3 1

4
7
24 0 1

6
4 1

4
10
24 0 1

12
TABLE A14. 1

12 Table A8+
1
24 Table A7+

1
4 Table A13 each+

1
8 Table A11

Given the current assignment, we have the lottery left 1
4 and four deterministic

assignments:

a b c d

1 1 0 0 0
2 0 0 0 1
3 0 1 0 0
4 0 0 1 0

a b c d

1 1 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 1 0 0

a b c d

1 0 0 0 1
2 1 0 0 0
3 0 0 1 0
4 0 1 0 0

a b c d

1 0 0 0 1
2 1 0 0 0
3 0 1 0 0
4 0 0 1 0

TABLE A15. Total weight 14

Now denote the weight for each deterministic assignments in Table A15 from left to
right as x, y, z,w. Then we have the following equations:

x + w = 1
6 = P4c

x + w = 5
24 =

1
2 –

7
24 = P3b –

7
24

Which is a contradiction.

(d) We know Fπ is ordinally efficient for every π ∈ Π, then RF is interim efficiency,.
□

Appendix E. Proof for Proposition 8

PROOF. interim efficiency is proved, now we show weakly envy-freeness and weakly
strategy-proofness.

Claim 1: RF is weakly Envy-free.
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LEMMA A4. For all RN , all π ∈ Π, all i that Ri = a1Ria2Ri . . .Rian, if there is an adjacent
preference R

′
with and aK+1R

′
aK for some K, then Pia(R) ≤ Pia(R

′
i,R–i).

PROOF. Denote piaK+1 be the probability to get aK+1 under preference Ri and p
′
iaK+1

be

the probability to get aK+1 under preference R
′. we have

Ri = a1Ri . . . aKRiaK+1Rian(A3)

R
′
i = a1R

′
i . . . aK+1R

′
iaKR

′
ian(A4)

At first, we have piak = p
′
iak
,∀k ≤ K. By procedure of Fπ there exist K∗ such that

π–1(K∗) = aK and i ∈ N(aK,R) in short N(aK), in other words, i would be allocated aK in
round K∗.

Ifπ–1(K∗+1) = aK+1, then piaK+1 = ϕ(aK+1, PK∗+1,RK∗+1)while p
′
iaK+1

= ϕ(aK+1, PK∗∗+1,RK∗∗+1)

forK∗∗ > K∗ if
∑
i p

′
iaK+1

< 1, or 0. In latter case, piaK+1 ≥ p
′
iaK+1

= 0 is obvious, In first case,

we have
∑
x∈Ū(Ri,aK) pix ≤ ∑

x∈Ū(R′ ,aK) p
′
ix ⇔ 1 –

∑
x∈Ū(Ri,aK) pix ≥ 1 –

∑
x∈Ū(R′ ,aK) p

′
ix

which means agent i with R′ has less or equal availability in round K∗∗ + 1 compared to
round K∗ + 1 with Ri. Then 1 –

∑
x∈Ū(Ri,aK) pix ≥ ϕ(aK+1,PK∗∗+1,RK∗∗+1). Then we need

to show ϕ(aK+1,PK∗+1,RK∗+1) ≥ 1 –
∑
x∈Ū(Ri,aK) pix. If

1–
∑
i∈N pia

|N(aK+1)|
≥ 1 –

∑
x∈Ū(Ri,aK+1) pix,

it’s true because ϕ(aK+1,PK∗+1,RK∗+1) = 1 –
∑
x∈Ū(Ri,aK) pix.

On the other hand, if 1–
∑
i∈N pia

|N(aK+1)|
< 1 –

∑
x∈Ū(Ri,aK+1) pix, then equal share is the most

agent i can get to object aK+1, therefore piaK+1 ≥ p
′
iaK+1

too.
If for some positive k, π–1(K∗ + k) = aK+1, the analysis for agent i with the preference

Ri will not change because he will not be allocated any object until round K∗ + k. On the
other hand, the analysis for agent i with the preference R′ will be different. Moreover,
agent i can’t have a higher probability to get object aK+1 because 1 –

∑
x∈Ū(R′ ,aK) p

′
ix is

even lower as there is a non-negative probability to be allocated before round K∗ + k.
Otherwise, aK+1 is consumed before K∗ round, then aK+1 either be allocated fully

before K∗ round, or it goes back to the end of π, thus, there will exist some positive k,
π–1(K∗ + k) = aK+1, and same analysis above.

Now, only one possibility remains: aK+1 be allocated fully before K∗ round, then
piaK+1 = p

′
iaK+1

= 0, finish proof. □

LEMMA A5. RF is weakly envy-free.

PROOF. Fix a preference profile ≳ with ≳i= a1 ≳i a2 ≳ · · · ≳i an, then there exist agent
j such that RFi(≳) ≳sdi RF j (≳). We need to show RFi(≳) = RF j (≳). Let’s start from the
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a1. Assume ≳ j (1) = ak ≠ a1, then there is 1
2 probability that a1 proceeds ak and

1
2

probability that ak proceeds a1. Then pia1 =
1
2 (

1
N(a1)

+ 1
N2(a1)

) > p j a1 =
1
2 (0 +

1
N2(a1)

) which

is a contraction to RFi(≳) ≳sdi RF j (≳), therefore ≳ j (1) = a1 ⇒ pia1 = p j a1.
Then let’s look at a2. Given the above analysis, w.o.l.g., let’s assume ≳ j (2) = ak:

≳i= a1 ≳i a2 ≳i · · · ≳i ak ≳i . . .(A5)

≳ j = a1 ≳ j ak ≳ j · · · ≳i a2 ≳i . . .(A6)

Let’s start to look at a2 and ak, there are also two possibilities, either ak proceeds a2
or a2 proceeds ak.

If ak proceeds a2, then when a2 appears, we have 1 –
∑
x p j x < 1 –

∑
x pix, then

(average) p j a2 > pia2 because either they have the same probability (could be 0) to
access object a2 where the equal share is lower than 1 –

∑
x p j x under some π or agent i

has higher probability to access object a2 when the equal share is higher than 1–
∑
x pix

under some π, therefore, the average of probability to access a2 will be higher for agent
i.

Now if a2 proceeds ak, there are two possibilities, when pia2 is 0, then p j a2 = pia2
and when pia2 ≠ 0, then pia2 ≥ p j a2. , therefore, the average of probability to access
a2 will at least equal for agent i compared to agent j. To sum up (by average), we get
pia2 > p j a2 which is a contradiction. Therefore p j a2 = pia2.
It’s enough to make induction for any ak given piak–1 = p j ak–1, by assuming ≳ j

(k) ≠≳i (k), then we get either pπiak
= pπj ak

(could be 0) or pπiak
> pπj ak

, and by averaging,
piak > p j ak , which is a contradiction. Then ≳ j (k) =≳i (k)⇒ piak = p j ak for all ak. □

Claim 2: RF is weakly strategy-proof.
Now we prove weakly strategy-proofness. We will show RF is upper invariance and

Swap monotonicity (Mennle and Seuken (2021)).

DEFINITION A1. Adjacent preference
Given Ri, we say R j is an adjacent preference of Ri if there exist K ∈ [n], such that

(a) o(i;K + 1) = o( j ;K) and o( j ;K + 1) = o(i;K)

(b) o(i; k) = o( j ; k) for all k ∈ [n] \ {K,K + 1}

Then given a preference R, we denote the set of adjacent preferences as δ(R).

AXIOM 1. (Swap monotonicity)
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A mechanism f is swap monotonic if, for all agents i ∈ N, all R and all R′
i ∈ δ(R) with

aRib but bR
′
ia, one of the following holds:

(a) either: f i(R
′
i,R–i) = f i(R),

(b) or: f i,b(R
′
i,R–i) > f i,b(R).

In other words, swap monotonicity requires that the mechanism reacts to the swap
in a direct and monotonic way: If the swap that brings b forward affects the agent’s
assignment at all, then at least its assignment for b must be affected directly. Moreover,
this change must be monotonic in the sense that the agent’s assignment for b must
increase when b is reportedly more preferred.

AXIOM 2. (Upper invariance)
A mechanism g is upper invariant if, for all agents i ∈ N, all R and all R′

i ∈ δ(R) with
aRib but bR

′
ia, we have f i,x(R) = f i,x(R

′
i,R–i) for all x ∈ U(Ri, a)

AXIOM 3. (Lower invariance)
A mechanism g is lower invariant if, for all agents i ∈ N, all R and all R′

i ∈ δ(R) with aRib
but bR

′
ia, we have f i,x(R) = f i,x(R

′
i,R–i) for all x ∈ L(Ri, b)

From Mennel and Seuken Mennle and Seuken (2021), strategy-proofness can be
decomposed into three axioms, Swap monotonicity, upper invariance, and lower invari-
ance. If one mechanism only satisfies the swap monotonic and upper invariant then it
is weakly strategy-proof.

Claim 2.1: RF satisfies upper invariance.
To notice Fπ will allocate agent object a to i in round k only when every object that is

better than a is allocated (according to agent i preference) and π(k) = a for some k, then
R
′
i( j ) = R

′
i( j ) for all j < k implies pia j = p

′
ia j

for all j < k which means that RF is upper

invariance because it’s an average over π.
Claim 2.2: RF satisfies Swapmonotonicity.
Swap monotonicity⇒ Fix a preference profile R with Ri : a1Ria2Ri . . . . Consider

a preference R′
i such that alR

′
iak with l > k. if we take R

′
i as a truth preference, We’ve

that ∀π if Fπi (R)R
sd
i F

π
i (R

′
i,R–i),then F

π
i (R) = F

π
i (R

′
i,R–i). Now, we consider if they are

not comparable by stochastic dominance. Consider al , there are two possibilities that
either al proceeds ak or ak proceeds al . Then we can repeat the analysis in Lemma
A4 to check there p

′π
ial

≥ pπial
for all π, and there exist a π such that it’s strict. Then

p
′
ial

> pial after averaging. Immediate result from Mennle and Seuken (2021). RF is
weakly strategy-proof.
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□
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