

Cluster-based & Label-aware Federated Meta-Learning for On-Demand Classification Tasks

<u>Tahani Aladwani</u>, Christos Anagnostopoulos, Shameem Parambath & Fani Deligianni

IEEE DSAA Conference 2024, Sunday, 6th Oct 2024 – Thursday, 10th Oct 2024, San Diego, US

School of Computing Science

Knowledge & Data Engineering Systems

Introduction

Federated Learning (FL): distributed learning paradigm that <u>collaboratively</u> trains a global model across clients without data exchange.

In many applications where <u>quick decisions are required</u>, or when a large number of alternatives has to be tested, the predictions have to be performed in near real-time.

Meta-Learning: accelerates model adaptation to arbitrary labels by allowing fine-tuning over small datasets when faced with previously unseen tasks.

Introduction

School of Computing Science Knowledge & Data Engineering Systems

Meta-Learning in FL relies on 'perfect setups', which are challenging to implement in real-world applications.

> Classification tasks share <u>exactly the same set</u> of labels ℓ and label distribution as those used in training meta-models.

➢Not possible to deal with any arbitrary <u>out-of-</u> <u>distribution classification requests</u>.

> Labels are equally distributed among clients.

Therefore, they rely on a single, global Federated Meta- Learning (FML). FML works well for <u>homogeneous</u> data and tasks, adapting to <u>heterogeneous data and task</u> <u>distribution</u> is challenging.

Challenges in FL Clients' Data

School of Computing Science Knowledge & Data Engineering Systems

- Data & Class Labels are heterogeneous; due to shifts in feature, label, and concept distributions.
- A client may have only a few classes compared to total number of classes required for a specific task.
- Among the available classes on a client, there may be class imbalance.
- Such disparities in labels across clients impede the <u>convergence of classifiers</u> and <u>degrading their</u> <u>performance</u>.

Challenges in On-demand Tasks

School of Computing Science Knowledge & Data Engineering Systems

On-demand classification task: requests training of a classifier over distributed clients' data, where data are labelled from a set $\mathcal{T} \subset \mathcal{L}$.

```
This set \mathcal{T} can be: \mathcal{T} \subset \mathcal{L}' or \mathcal{T} \subset \mathcal{L}''.
```

Note: in traditional FML and FL, we obtain the trivial case $\mathcal{T} \equiv \mathcal{L}$.

A single, global FML model proves to be inefficient and impractical to accommodate (i) any arbitrary classification tasks and (ii) out-of-distribution labels across clients.

Our CL-FML Solution

School of Computing Science Knowledge & Data Engineering Systems

We introduce a **Cluster-based & Label-aware FML** framework (**CL-FML**) that addresses such challenges, departing from standard FL and FML paradigms.

Idea: CL-FML gathers clients together based on label shifting mitigating label imbalance per task.

Main goals:

- ✓ Study the cases of training more than one (reusable) meta- model tailored to available labels $\mathcal{L}_k \subset \mathcal{L}$ of a cluster of clients \mathcal{C}_k .
- ✓ Provide compact sized meta-models stored on clients temporarily, to be reused for future tasks
- CL-FML not only adapts meta-models solely to tasks with exactly the same distribution; it copes with sharing meta-models among clusters to further fine-tune in case of out of distribution tasks.

Centralized & Decentralized Federated Learning

School of Computing Science Knowledge & Data Engineering Systems

Centralized Federated Learning (CFL):

A distributed learning system with \mathcal{N} clients $\mathcal{N}=n_1, n_2, ..., n_{\mathcal{N}}$. Let \mathfrak{D}_i be the local dataset of a client $n_i \in \mathcal{N}$. In CFL, given a subset of $\mathcal{N}' < \mathcal{N}$ clients $\mathcal{N}' \subset \mathcal{N}$, the local loss for each $n_i \in \mathcal{N}'$ is:

$$\mathcal{R}_{i}(\theta) = \frac{1}{|\mathcal{D}_{i}|} \sum_{(x,y) \in \mathfrak{D}_{i}} \mathfrak{I}((\theta, x), y)$$

The global loss for selected clients \mathcal{N}' is:

$$\mathcal{R}(\boldsymbol{\theta}^*) = \sum_{n_i \in \mathcal{N}'} \rho_i \ \mathcal{R}_i(\boldsymbol{\theta})$$
, where $\rho_i = \frac{\mathfrak{D}_i}{\sum_{n_j \in \mathcal{N}'} |\mathfrak{D}_j|}$

Decentralized Federated Learning (DFL):

In DFL each client n_i communicates only with its neighbors $\mathcal{N}_i \subset \mathcal{N}$ of clients with connections between them. Hence, there is <u>no need</u> for a centralized server to aggregate the locally updated models as in CFL. At round t, each client n_i first aggregates the models received from its neighbors $n_i \in \mathcal{N}_i$,

$$\theta_i^t = \sum_{n_j \in \mathcal{N}_i \cup \{n_i\}} \theta_i^t$$

Then, trains local model $\boldsymbol{\theta}$ using local data \mathfrak{D}_i .

$$\theta_i^{t+1} = \theta_i^t - \eta \nabla \mathcal{R}_i(\theta_i^t)$$

Problem Fundamentals

School of Computing Science Knowledge & Data Engineering Systems

- Each client n_i collects local labelled data $\mathfrak{D}_i = \{X_i \times Y_i \sim \mathcal{P}_i : X_i \in \mathbb{R}^d; Y_i \in \mathcal{L}\}$ from an unknown joint probability distribution \mathcal{P}_i
- $\mathcal{L} = \{\ell_1, \dots, \ell_M\}$ all the available labels across all clients in the network.

For any pair of clients (n_i, n_j) with $n_i \neq n_j$, the joint probability distributions can be either <u>similar</u> $(\mathcal{P}_i \approx \mathcal{P}_j)$ or <u>dissimilar</u> $(\mathcal{P}_i \neq \mathcal{P}_j)$.

Clients have data with some labels from \mathcal{L} and, in real cases, <u>not all of them</u>.

Note: all labels are not known to all clients in advance.

Before Clustering (Label-aware Client Clustering)

School of Computing Science Knowledge & Data Engineering Systems

To make the clients aware of the available labels, we introduce <u>a label-aware distributed</u> <u>mechanism.</u>

 We rely on <u>sharing only label distribution among clients</u> to approximate a prior label distribution per cluster.

Ring-based Label Dissemination:

Each client n_i disseminates only its local labels $\mathcal{L}_i \subset \mathcal{L}$ to neighbours. In a ring topology, each client n_i sends a message to its neighbour n_j and receives a message from another neighbour \mathcal{L}_l .

At round t, client n_i expands its local label set \mathcal{L}_i with the labels received from n_l , i.e., $\mathcal{L}_i \leftarrow \mathcal{L}_i \cup \mathcal{L}_l$ and sends \mathcal{L}_i to n_j .

School of Computing Science Knowledge & Data Engineering Systems

Label-aware Clustering:

Based on the initial label set \mathcal{L}_i and global label set \mathcal{L} , each client n_i represents its available labels with a probability $P_i = [p_1, ..., p_M] \in [0,1]^M$. Given \mathcal{L}_i and \mathcal{L} , multi-hot encoding $z = [z_1, ..., z_M] \in [0,1]^M$ has $z_k = 1$ if $z_k \in \mathcal{L}_i$; $z_k = 0$,

otherwise.

Leader n_l initiates a Minimum Spanning Tree (MST) to incrementally gather all probability label vectors.

 $\{P_i\}_{i=1}^N$, will be used for clustering the clients into $K < \mathcal{N}$.

- ✓ **Leader** groups nodes' label distributions into *K* clusters. Each cluster is represented by the cluster label distribution $w_k = [w_{k1}, ..., w_{kM}]$ associated with the labels $\ell_1 ..., \ell_M$, respectively.
- Cluster label distributions w_k are incrementally updated upon receiving a client's label distribution P_i.

After Clustering

School of Computing Science Knowledge & Data Engineering Systems

(Cluster-based Multiple Meta-model Learning)

Objective: train a tailored decentralized meta-model f_k for each cluster $C_k, k \in [K]$, capable of fast and flexible adaptation to on-demand tasks with varying label sets $\mathcal{A} = \{\mathcal{T}_1, \mathcal{T}_2, ...\}$. This is achieved via fine-tuning using selected samples from clients belonging to each cluster C_k .

- \mathfrak{D}_i^M is used to train the cluster's meta- model f_k . It can be imbalanced.
- f_k serves as the starting point to learn a generic representation of clients' data in C_k , to use with future tasks' labels $\mathcal{T}_{1,} \in \mathcal{A}$ assigned to C_k .
- \mathfrak{D}_i^Q refers to **labeled-balanced** samples eliminating class imbalances in the fine-tune stage of f_k .

$$\mathfrak{D}_i^Q \cap \mathfrak{D}_i^M = \emptyset$$

Meta-models Learning

School of Computing Science Knowledge & Data Engineering Systems

Within cluster C_k : client $n_i \in C_k$ locally updates $\theta_{k,i}$ along with neighbors $\theta_{k,j}$, $n_j \in \mathcal{N}_j$ deriving a new **local meta-model** from its meta-training set \mathfrak{D}_i^M over local epochs E_M using SGD.

During round $t \in \{1, ..., T\}$, n_i aggregates its neighbors local meta-models as:

$$\tilde{\theta}_{k,i}^t = \sum_{n_j \in \mathcal{N}_j} w_j \theta_{k,j}^t \qquad , \qquad w_i = \frac{|D_i^M|}{\sum_{n_j \in \mathcal{N}_j} |D_j^M|}$$

Then, computes the gradient of the loss, $\nabla \mathcal{R}(\tilde{\theta}_{k,i}^t)$, updating the local meta-model as:

$$\boldsymbol{\theta}_{k,i}^{t+1} \leftarrow \tilde{\boldsymbol{\theta}}_{k,i}^t - \eta \nabla \mathcal{R}(\tilde{\boldsymbol{\theta}}_{k,i}^t)$$

The cluster-based meta-model $\tilde{\theta}_{k,i}^t = \tilde{\theta}_{k,i}^t$, $\forall n_i$ is then passed to all clients in the cluster. This meta-model locally maintained on each client serves as an initial model.

School of Computing Science Knowledge & Data Engineering Systems

Based on the previous step, each client n_i is allocated to a cluster and is equipped with a meta-model $\tilde{\theta}_{k_r}^t$.

Consider a new incoming task \mathcal{T} requesting the training of a classifier over distributed clients' data with labels $\mathcal{T} = \{\ell_{\mathcal{T}}\} \subseteq \mathcal{L}$.

The task assigned initially to a group \underline{C}_{k} of clients that have the majority of the labels requested in set \mathcal{T} based on the closest group cluster distribution.

 $k = \arg\min_{k \in [K]} \mathcal{H}(\boldsymbol{w}_{k}, \boldsymbol{q})$

 $q = \{q_m\}_{m \in M}$ is the probability label distribution of the task's requested labels \mathcal{T} .

Task-tailored Distributed Meta-model Learning

We distinguish two cases:

Case I. If $\underline{T \subseteq \mathcal{L}_k}$, then, group $\underline{C_k}$ is the most suitable to directly handle this task involving its clients in the training.

Case II. If $\underline{\mathcal{T} \supset \mathcal{L}_k}$, then:

- ✓ The group C_k initiates a process for handling the labels in $T \cap L_k$.
- ✓ Involve clients from other clusters $\{C_m\}_{m=1}^K \{C_k\}$ capable of handling the rest of the labels in $\mathcal{T} = \mathcal{T} \setminus \mathcal{L}_k$.
- \checkmark Keep engaging clusters until all their labels are included in \mathcal{T} .
- ✓ Rank these clusters based on their label contribution to task \mathcal{T} and <u>engage the</u> <u>minimum number $m \leq K$ of those cluster whose $\bigcup_{k=1}^{m} \{\mathcal{L}_k\} \subseteq \mathcal{T}$.</u>

Task-tailored Distributed Meta-model Learning

After selecting the most suitable cluster C^* (Case I) or most suitable clusters C^*_+ (Case II), <u>the</u> <u>associated clients are engaged in the distributed training of the classifier</u> as the following.

✓ These clients use their cluster-based meta-models f_k from cluster $C \in C^*_+$ to start off the training process.

Note: Even though a substantial amount of relevant labeled-data may be available for C^* or (C^*_+) , there might still be a need for augmentation of data in group $C_k \in C^*_+$ with labels $\mathcal{T}/\mathcal{L}_k$, which are not present in *k*-th cluster's client data (missing labels).

This **facilitates the fine-tuning** of the requested task-tailored meta model.

University of Glasgow Task-tailored Distributed Meta-model Learning (Data augmentation)

For each suitable cluster $C_k \in C_+^*$, the corresponding clients locally identify their missing labels required per task T.

- ✤ These clients generate augmented data labelled by the missing labels using a MixUp meta-model g_{ℓ} from clients in cluster $C_{\ell} \in C^*_+$, $\ell \neq k$, for which these labels are not missing.
- ♦ MixUp g_{ℓ} generates labelled samples (x, y) conditioned on the labels y locally on a client $n_i \in C_k$ such that $\{(x, y): y \in T \setminus \mathcal{L}_k\}$. Clients within the cluster individually use MixUp models.

Fine-tuning

As a result: a client n_i ∈ C_k can now construct its query set D^Q_i = {(x, y): y ∈ T\L_k} including
(i) The actual data labelled with the requested task labels.
(ii) The augmented data labelled with the associated missing labels.
Subsequently, the task-tailored meta-model notated as θ^{T'} is fine-tuned based on <u>the query sets</u> of the clients in the suitable clusters C_k ∈ C^{*}₊ after T' fine-tuning rounds.

The local update of the distributed task-tailored meta-model $\underline{\hat{\theta}}_{k,i,\cdot}^t$ at fine-tuning round at client \underline{n}_i from suitable cluster $C_{\ell} \in C_{+}^*$ uses batch SGD over the query set \mathcal{D}_i^Q is given by:

$$\hat{\theta}_{k,i}^{t+1} \leftarrow \tilde{\theta}_{k,i}^t - \eta \nabla \mathcal{R}(\tilde{\theta}_{k,i}^t)$$

Experimental Evaluation

Experimental Set-up:

- **Images:** MNIST, EMNIST, MEDMNIST, Fashion-MNIST, and CIFAR-100; classes |C| = (10, 47, 6, 10, 100), respectively.
- **Clients:** $|\mathcal{N}| \in \{50, 100, 200, 100\}.$
- **On-demand tasks:** {600, 600, 500, 500}.
- **Fine-tuning data:** 1α , $\alpha \in \{0.5, 0.6, 0.7\}$.

Baselines

- Baseline 1: The decentralized FL (DFedAvg).
- Baseline 2: Cluster-based DFedAvg (C-DFedAvg).
- Baseline 3: Group-based FML (G-FML).

Note: CL-FML and G-FML, require fine-tuning for their meta-models over relatively small amount of data

Experimental Results

Comparison assessment with baselines (Meta-models)

MNIST											
Metric	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)			
Training Rounds	10	16	9	10	10	3	4	3			
Actual Data Access (%)	100	100	30	40	50	30	40	50			
Augmented Data Generation (%)	48.83	61.14	30.588	20.19	18.35	24.4	19.53	14.65			
Accuracy (%) / F_1 score	96.80/0.96	94.39/0.93	95.19/0.94	93.12/0.93	94.84/0.94	96.63/0.96	96.45/0.96	96.36/0.97			
Fashion-MNIST											
Metric	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)			
Training Rounds	15	20	10	10	9	6	5	6			
Actual Data Access (%)	100	100	30	40	50	30	40	50			
Augmented Data Generation (%)	38.46	47.82	14.34	19.12	23.91	11.53	15.38	19.23			
Accuracy (%) / F_1 score	86.75/0.88	84.03/0.83	81.98/0.81	82.26/0.82	85.07/0.84	86.03/0.86	86.385/0.86	85.15/0.85			
EMNIST											
Metric	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)			
Training Rounds	15	25	20	18	20	7	6	6			
Real Data Access (%)	100	100	30	40	50	30	40	50			
Augmented Data Generation (%)	33.185	64	14.34	19.12	23.91	11.53	15.38	19.23			
Accuracy (%) / F_1 score	90.85/0.89	89.16/0.88	88.15/0.87	88.22/0.881	88.71/0.88	89.53/0.89	91.29/0.91	89.72/0.89			
CIFAR-100											
Metric	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)			
Training Rounds	40	85	25	24	27	12	10	14			
Real Data Access (%)	100	100	30	40	50	30	40	50			
Augmented Data Generation (%)	36.78	68.2	24.33	27.73	29.83	18.67	22.34	24.57			
Accuracy (%) / $\overline{F_1}$ score	71.40/0.71	67.59/0.67	67.53/0.67	68.28/0.67	68.67/0.68	70.89/0.74	71.18/0.74	71.15/0.73			

Experimental Results

Multiple meta-models' top-1 accuracy (%) of CL-FML against global meta-model (G-FML) vs. convergence (samples of two groups).

IMPACT OF OVERLAPPING/SIMILARITY BETWEEN TASKS & CLUSTERS ON FINE-TUNED MODELS PERFORMANCE.

MNIST											
$\mathcal{P}(\mathcal{T} sim)$	Similarity	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)		
20%	80%	98.96%	98.65%	99.29%	99.10	99.34%	98.96%	99.55%	99.24%		
30%	67%	97.11 %	96.074	95.48%	95.88%	96.07%	96.01%	96.61%	96.81%		
30%	50%	96.91%	96.56	97.13%	96.73%	96.91%	97.86%	97.51%	97.11%		
20%	30%	97.01%	96.01	95.56%	96.55%	96.48%	97.01%	97.34%	97.23%		
Fashion-MNIST											
$\mathcal{P}(\mathcal{T} sim)$	Similarity	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)		
20%	80%	91.96%	91.14%	87.80%	88.89%	90.03%	89.40%	92.11%	90.79%		
30%	70%	90.04%	85.15%	86.13%	87.96%	88.77%	87.52%	89.36%	90.94%		
30%	50%	86.48%	77.71%	71.18%	72.22%	83.52%	86.80%	86.92%	86.17%		
20%	25%	79.78%	75.56%	75.77%	79.65%	79.55%	80.58%	79.55%	78.94%		
EMNIST											
$\mathcal{P}(\mathcal{T} sim)$	Similarity	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)		
20%	80%	93.27%	89.38%	92.21%	93.25%	92.83%	93.81 %	92.15%	93.35%		
30%	70%	90.18%	90.41%	91.35%	88.80%	88.50%	88.59%	91.71%	89.61%		
30%	50%	89.25%	89.20%	85.70 %	86.75%	87.33%	86.34%	86.47%	89.56%		
20%	30%	79.64%	87.65%	83.34%	83.84%	85.19%	86.38%	84.84%	83.84%		
CIFAR-100											
$\mathcal{P}(\mathcal{T} sim)$	Similarity	C-DFedAvg	DFedAvg	G-FML(0.7)	G-FML(0.6)	G-FML(0.5)	CL-FML(0.7)	CL-FML(0.6)	CL-FML(0.5)		
20%	80%	72.84%	65.60%	66.40%	67.60%	67.77%	71.20%	72.00%	72.82%		
30%	70%	69.92%	67.60%	68.20%	67.86%	68.50%	69.54%	70.01%	70.07%		
30%	50%	74.84%	71.13%	68.91 %	70.38%	70.67%	74.56%	73.78%	73.09%		
20%	30%	68.43%	66.05%	66.63%	67.31%	67.77%	68.28%	68.95 %	68.54%		

- We introduced the CL-FML framework for classification tasks with label-shifting across distributed clients.
- CL-FML leverages decentralized federated meta-learning via a novel label-driven client clustering, where multiple cluster-based meta-learning models deal with any arbitrary classification tasks.
- CL-FML leverages data augmentation to train on- demand out-of-distribution classifier training.
- Comprehensive experiments against baselines showcase the superiority of CL-FML.

Thank you!

Tahani Aladwani

School of Computing Science Knowledge & Data Engineering Systems