

School *of* Computing Science **Knowledge & Data Engineering Systems**

The Price of Labelling: A Two-Phase Federated Self-Learning Approach

Tahani Aladwani, Christos Anagnostopoulos, Shameem Parambath & Fani Deligianni

ECML PKDD Conference 2024, Mon, 9 Sept 2024 – Fri, 13 Sept 2024, Vilnius

Introduction

School *of* Computing Science **Knowledge & Data Engineering Systems**

Key (ideal) assumptions in Federated Learning (FL) :

1. **Supervised Learning:** All clients possess **sufficient** training data with ground-truth labels.

2. **Sumi Supervised Learning:** Subset of clients or server have **adequate labelled samples to train supervised models**, ensuring generalization across 'unlabelled' clients.

3. **Self-Learning:** Operates under the assumption that data are independent and identically distributed (IID).

4. The model can generate **high-quality pseudo-labels** by considering **only labelled data** during the training.

Introduction

School *of* Computing Science **Knowledge & Data Engineering Systems**

Distributed data in real-world scenarios:

- ➢ Data can be non-IID, leading to common issues such as **class imbalance & distribution shift across clients**.
- ➢ Existence of un-labeled data across clients, due to various factors like **limited resources, labeling costs, and human errors**

Challenge: create high-quality pseudo-labels without addressing these issues.

- Model performance heavily relies on the quality and distribution of the training data.
- High degree of heterogeneity among client data significantly decreases model performance.

Overview of the problem

School *of* Computing Science **Knowledge & Data Engineering Systems**

Disparity between ideal key assumptions & realistic scenarios prompt us to contemplate the following question:

What is the *price* **of learning a global model using** *scarce* **and** *skewed* **distributed** *labelled* **data, while capitalizing on partially labelled and fully unlabelled data across clients?**

Consider a set $\mathcal{N} = \{n_1, ..., n_N\}$ of distributed clients. Each client $n_i \in \mathcal{N}$ possesses a dataset \mathcal{D}_i containing $\mathcal{C} = \{0, ..., \mathcal{C} - 1\}$ classes (labels) of data, which can be **labelled and/or unlabelled**.

Clients are categorized into three types based on their data:

- **Type I** clients (l**abelled clients**) $n_i \in \mathcal{N}^L \subset \mathcal{N}$, denoted as $\mathcal{D}_i^L = \{(x_k, y_k)\}_{k=1}^{\mathcal{D}_i^+}$ $\frac{\mathcal{D}_i^L}{k=1}$, \mathcal{Y}_k is the label.
- **Type II** clients (**partially labelled clients**) $n_i \in \mathcal{N}^P \subset \mathcal{N}$ have **labelled and unlabelled** samples, i.e., $D_i^P = \{ (x_k, y_k \vee \bot) \}_{k=1}^{D_i}$ p_i^P
 $_{k=1}$, \perp .
- **Type III** clients (**unlabelled clients**) $n_i \in \mathcal{N}^L \subset \mathcal{N}$ have **all samples unlabelled**, , i.e., $\mathcal{D}_i^L = \{(x_k, \bot)\}_{k=1}^{\mathcal{D}_i}$ \mathcal{D}_i^U .

Focus: labelled samples are much fewer than unlabelled ones, i.e., $|\mathcal{D}^{L}| \ll |\mathcal{D}^{U}|$

1. Local Data Augmentation

2PFL adopts **MixUp** to augment data over client .

 \checkmark **In labelled/partially labelled client** $n_i \in \mathcal{N}^L$ ∪ \mathcal{N}^P , for any two inputs x_k and x_ℓ with labels y_k and y_{ℓ} , MixUp synthesizes the sample (x', y') : $x' = \lambda x_k + (1 - \lambda)x_\ell$ and $y' = \lambda y_k + (1 - \lambda)y_\ell$

with $\lambda \in (0, 1)$, a blending parameter controlling interpolation between samples.

 \checkmark **In unlabelled client** $n_i \in \mathcal{N}^U$, two randomly selected pseudo-labelled inputs x_k and x_ℓ with highconfidence pseudo-labels \hat{y}_k and \hat{y}_ℓ , respectively, generate the sample (x', y') :

$$
x' = \lambda x_k + (1 - \lambda)x_\ell \text{ and } y' = \lambda \hat{y}_k + (1 - \lambda)\hat{y}_\ell
$$

2. 2PFL Training Phases

2PFL exploits labelled, partially labelled and unlabelled data across all types of clients ($N^L \cup N^P \cup$ $({\cal N}^U)_{n_i\in\mathcal{N}}$ to minimize the loss function $f^L(\theta_G),$ $f^P(\theta_G),$ and $f^U(\theta_G)$ over <mark>labelled, partially labelled and</mark> **unlabelled clients**, respectively:

$$
\min_{\theta_{G}} f(\theta_{G}) = \frac{1}{\mathcal{N}^{L}} \sum_{\ell=1}^{\mathcal{N}^{L}} \mathcal{L}^{L}(\mathbf{x}_{\ell}^{L}, y_{\ell}^{L}, \theta_{G}) + \frac{1}{\mathcal{N}^{P}} \sum_{\ell=1}^{\mathcal{N}^{P}} \mathcal{L}^{P}(\mathbf{x}_{\ell}^{P}, y_{\ell}^{P}, \theta_{G}) + \frac{1}{\mathcal{N}^{U}} \sum_{\ell=1}^{\mathcal{N}^{U}} \mathcal{L}^{U}(\mathbf{x}_{\ell}^{U}, y_{\ell}^{U}, \theta_{G})
$$

 $\mathcal L$ is task-specific loss function on clients with labelled, partial labelled and unlabelled data.

Phase 1: Engagement of Labelled & Partially Labelled Clients:

Phase 1 trains a global pseudo-labeling model $\theta_G^{(1)}$ from decentralized labelled and partially labelled client $n_i \epsilon \mathcal{N}^L \cup \mathcal{N}^P$, using the ground-truth labels optimizing the loss:

$$
\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)} = \boldsymbol{min}\left[\frac{1}{\mathcal{N}^L}\sum_{\ell=1}^{\mathcal{N}^L} \mathcal{L}_{CE}\left(x_{\ell};(\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)})\right), y_{\ell}\right)\right]
$$

 \mathcal{L}_{CF} is cross-entropy loss and $g(\cdot; \cdot)$ represents the classifier.

At round $t\leq T_1$, $\bm{\theta}^{(1)}_{\bm{G}}$ are disseminated to each labelled client n_i locally updating over E local epochs: ${\boldsymbol{\theta}}_i^{t,e+1} = \theta_i^{t,e} - \eta_t \nabla f_t(\theta_i^{t,e}), e = 1, ..., E.$

After completion of epochs, each client $n_i\epsilon\mathcal{N}^L$ sends its local model $\theta^{t,E}_i$ to the server for aggregation:

$$
\theta_{\mathit{G},t}^{(1)} \hspace{2pt} = \hspace{-2pt} \frac{1}{|\mathcal{N}^L|} \hspace{2pt} \textstyle \sum_{i \in \mathcal{N}^L} \hspace{2pt} \theta_{i}^{\mathit{t},E}
$$

Phase 1: Engagement of Labelled & Partially Labelled Clients:

At each round t, $\theta_{G,t}^{(1)}$, is distributed to **each** partially labelled client $n_i \epsilon N^p$ to be used for pseudo-labeling of partially labelled samples in the subsequent training rounds.

Each unlabelled client $n_i \epsilon N^U$ uses $\bm{\theta_{G,t}}$ to predict the label \hat{y}_u for the unlabelled input x_u based on previous knowledge captured from previous rounds $\tau < t$.

Select the class $c \in \mathcal{C}$ with maximum predicted confidence from $\boldsymbol{\theta}_{G,t}$, i.e., the pseudo-label for x_{11} is \hat{y}_{11} = c, such that:

$$
c = \arg max_{c' \in \mathcal{C}} \quad p \, \theta_{G,t}(c'|x_u) \ge \varphi
$$

Phases 2 & 2+: Engagement of Unlabelled Clients & Fine-tuning:

The unlabelled clients (along with the rest) are engaged in Phase 2 to enhance the robustness of the global $\bm{\theta}^{(2)}_{\bm{G}}.$

We **progressively** incorporate pseudo-labelled samples with high confidence obtained from previous rounds into the subsequent.

Benefit: This allows the global model to generate increasingly high-quality pseudo-labels for unlabelled samples in unlabelled clients.

Experimental Evaluation

Experimental Set-up:

- Images: MNIST, EMNIST, MEDMNIST, Fashion-MNIST; classes $|\mathcal{C}| = (10, 47, 6, 10)$, respectively.
- Number of samples per class differs from one client to another (non-iid).
- Clients: || ∈{10, 20, 50}, split the clients into **Types I, II and III** based on the ratio **2:3:5**.

Baselines

- **Baseline 1:** FL benchmark (**FedAvg**): all clients have **fully labelled data without class imbalance**.
- **Baseline 2: PL-FL**, which involves only **Type II** clients. All clients have **partially labelled data with class imbalance**.
- **Baseline 3: L&PL-FL**, which involves **Type I & II** clients **with class imbalance**.

School *of* Computing Science **Knowledge & Data Engineering Systems**

Experimental Results

Impact of pseudo-labeling confidence on training phases

Experimental Results

Comparison assessment with baselines

School *of* Computing Science **Knowledge & Data Engineering Systems**

Experimental Results

Comparison assessment with baselines (across datasets)

Experimental Results

Impact of phases on model convergence & pseudo-labeling efficiency

School *of* Computing Science **Knowledge & Data**

- ❖ Our **2PFL** framework addresses the challenge of training FL models across different **types of clients** with limited and skewed labeled and unlabelled data.
- ❖ By leveraging data augmentation, 2PFL leads to improved model performance and accelerates convergence by progressive pseudo-labelling.
- ❖ Our experiments highlight that 2PFL consistently outperforms baselines across various performance metrics and datasets.

The price for learning a global model with skewed and unlabeled data is minimal with 2PFL

Thank you!

Tahani Aladwani

School *of* Computing Science **Knowledge & Data Engineering Systems**