

School *of* Computing Science Knowledge & Data Engineering Systems

The Price of Labelling: A Two-Phase Federated Self-Learning Approach

<u>Tahani Aladwani</u>, Christos Anagnostopoulos, Shameem Parambath & Fani Deligianni

ECML PKDD Conference 2024, Mon, 9 Sept 2024 – Fri, 13 Sept 2024, Vilnius

Introduction

School of Computing Science Knowledge & Data Engineering Systems

Key (ideal) assumptions in Federated Learning (FL) :

1. **Supervised Learning:** All clients possess <u>sufficient</u> training data with ground-truth labels.

2. Sumi Supervised Learning: Subset of clients or server have <u>adequate labelled samples to train</u> <u>supervised models</u>, ensuring generalization across 'unlabelled' clients.

3. **Self-Learning:** Operates under the assumption that data are independent and identically distributed (IID).

4. The model can generate **<u>high-quality pseudo-labels</u>** by considering **<u>only labelled data</u>** during the training.

Introduction

School of Computing Science Knowledge & Data Engineering Systems

Distributed data in real-world scenarios:

- Data can be non-IID, leading to common issues such as class imbalance & distribution shift across clients.
- Existence of un-labeled data across clients, due to various factors like <u>limited resources</u>, <u>labeling costs, and human errors</u>

Challenge: create high-quality pseudo-labels without addressing these issues.

- <u>Model performance heavily relies on the quality and distribution of the training data</u>.
- High degree of heterogeneity among client data <u>significantly decreases model</u> <u>performance</u>.

School of Computing Science Knowledge & Data Engineering Systems

Disparity between ideal key assumptions & realistic scenarios prompt us to contemplate the following question:

What is the *price* of learning a global model using *scarce* and *skewed* distributed *labelled* data, while capitalizing on partially labelled and fully unlabelled data across clients?

Consider a set $\mathcal{N} = \{n_1, ..., n_{\mathcal{N}}\}$ of distributed clients. Each client $n_i \in \mathcal{N}$ possesses a dataset \mathcal{D}_i containing $\mathcal{C} = \{0, ..., \mathcal{C} - 1\}$ classes (labels) of data, which can be **labelled and/or unlabelled**.

Clients are categorized into three types based on their data:

- **Type I** clients (labelled clients) $n_i \in \mathcal{N}^L \subset \mathcal{N}$, denoted as $\mathcal{D}_i^L = \{(x_k, y_k)\}_{k=1}^{\mathcal{D}_i^L}, y_k$ is the label.
- **Type II** clients (**partially labelled clients**) $n_i \in \mathcal{N}^P \subset \mathcal{N}$ have <u>labelled and unlabelled</u> samples, i.e., $\mathcal{D}_i^P = \{(x_k, y_k \lor \bot)\}_{k=1}^{\mathcal{D}_i^P}, \bot.$
- Type III clients (unlabelled clients) $n_i \in \mathcal{N}^L \subset \mathcal{N}$ have all samples unlabelled, , i.e., $\mathcal{D}_i^L = \{(x_k, \bot)\}_{k=1}^{\mathcal{D}_i^U}$.

Focus: labelled samples are much fewer than unlabelled ones, i.e., $|\mathcal{D}^{L}| \ll |\mathcal{D}^{U}|$

1. Local Data Augmentation

2PFL adopts MixUp to augment data over client .

✓ In labelled/partially labelled client $n_i \in \mathcal{N}^L \cup \mathcal{N}^P$, for any two inputs x_k and x_ℓ with labels y_k and y_ℓ , MixUp synthesizes the sample (x', y'): $x' = \lambda x_k + (1 - \lambda) x_\ell$ and $y' = \lambda y_k + (1 - \lambda) y_\ell$

with $\lambda \in (0, 1)$, a blending parameter controlling interpolation between samples.

✓ In unlabelled client $n_i \in \mathcal{N}^U$, two randomly selected pseudo-labelled inputs x_k and x_ℓ with highconfidence pseudo-labels \hat{y}_k and \hat{y}_ℓ , respectively, generate the sample (x', y'):

$$x' = \lambda x_k + (1 - \lambda) x_\ell$$
 and $y' = \lambda \hat{y}_k + (1 - \lambda) \hat{y}_\ell$

2. 2PFL Training Phases

2PFL exploits labelled, partially labelled and unlabelled data across all types of clients $(\mathcal{N}^L \cup \mathcal{N}^P \cup \mathcal{N}^U)_{n_i \in \mathcal{N}}$ to minimize the loss function $f^L(\theta_G)$, $f^P(\theta_G)$, and $f^U(\theta_G)$ over <u>labelled</u>, partially labelled and <u>unlabelled clients</u>, respectively:

$$\min_{\theta_G} f(\theta_G) = \frac{1}{\mathcal{N}^L} \sum_{\ell=1}^{\mathcal{N}^L} \mathcal{L}^L(x_\ell^L, y_\ell^L, \theta_G) + \frac{1}{\mathcal{N}^P} \sum_{\ell=1}^{\mathcal{N}^P} \mathcal{L}^P(x_\ell^P, y_\ell^P, \theta_G) + \frac{1}{\mathcal{N}^U} \sum_{\ell=1}^{\mathcal{N}^U} \mathcal{L}^U(x_\ell^U, y_\ell^U, \theta_G)$$

 \mathcal{L} is task-specific loss function on clients with labelled, partial labelled and unlabelled data.

Phase 1: Engagement of Labelled & Partially Labelled Clients:

Phase 1 trains a global pseudo-labeling model $\theta_{G}^{(1)}$ from decentralized labelled and partially labelled client $n_i \in \mathcal{N}^L \cup \mathcal{N}^P$, using the ground-truth labels optimizing the loss:

$$\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)} = \boldsymbol{min} \left[\frac{1}{\mathcal{N}^{L}} \sum_{\ell=1}^{\mathcal{N}^{L}} \mathcal{L}_{CE} \left(\boldsymbol{x}_{\ell}; (\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)}), \boldsymbol{y}_{\ell} \right) \right]$$

 \mathcal{L}_{CE} is cross-entropy loss and $g(\cdot; \cdot)$ represents the classifier.

At round $t \leq T_1$, $\theta_{G}^{(1)}$ are disseminated to each labelled client n_i locally updating over E local epochs: $\theta_i^{t,e+1} = \theta_i^{t,e} - \eta_t \nabla f_t(\theta_i^{t,e}), e = 1, ..., E.$

After completion of epochs, each client $n_i \in \mathcal{N}^L$ sends its local model $\theta_i^{t,E}$ to the server for aggregation:

$$\theta_{G,t}^{(1)} = \frac{1}{|\mathcal{N}^L|} \sum_{n_{i \in \mathcal{N}^L}} \theta_i^{t,E}$$

Phase 1: Engagement of Labelled & Partially Labelled Clients:

At each round t, $\theta_{G,t}^{(1)}$, is distributed to **each** partially labelled client $n_i \in \mathcal{N}^p$ to be used for pseudo-labeling of partially labelled samples in the subsequent training rounds.

Each unlabelled client $n_i \in \mathcal{N}^U$ uses $\theta_{G,t}$ to predict the label \hat{y}_u for the unlabelled input x_u based on previous knowledge captured from previous rounds $\tau < t$.

Select the class $c \in C$ with maximum predicted confidence from $\theta_{G,t}$, i.e., the pseudo-label for x_u is $\hat{y}_u = c$, such that:

$$c = \arg \max_{c' \in \mathcal{C}} \quad p \, \boldsymbol{\theta}_{\boldsymbol{G}, \boldsymbol{t}}(c' | \boldsymbol{x}_u) \geq \varphi$$

Phases 2 & 2+: Engagement of Unlabelled Clients & Fine-tuning:

The unlabelled clients (along with the rest) are engaged in Phase 2 to enhance the robustness of the global $\theta_{G}^{(2)}$.

We **progressively** incorporate pseudo-labelled samples with high confidence obtained from previous rounds into the subsequent.

Benefit: This allows the global model to generate increasingly high-quality pseudo-labels for unlabelled samples in unlabelled clients.

Experimental Evaluation

Experimental Set-up:

- Images: MNIST, EMNIST, MEDMNIST, Fashion-MNIST; classes |C| = (10, 47, 6, 10), respectively.
- Number of samples per class differs from one client to another (non-iid).
- Clients: $|\mathcal{N}| \in \{10, 20, 50\}$, split the clients into **Types I, II and III** based on the ratio **2:3:5**.

Baselines

- Baseline 1: FL benchmark (FedAvg): all clients have fully labelled data without class imbalance.
- Baseline 2: PL-FL, which involves only Type II clients. All clients have partially labelled data with class imbalance.
- Baseline 3: L&PL-FL, which involves Type I & II clients with class imbalance.

Impact of pseudo-labeling confidence on training phases

Dataset	Method	Phase1	Phase2	Phase2+
MNIST	2PFL	96.93%	95.02%	97.31%
	\mathbf{FedAvg}	88.07%	88.67%	86.29%
	\mathbf{PL} -FL	79.65%	85.10%	85.10%
	L&PL-FL	88.59%	90.01%	90.01%
F-MNIST	2PFL	86.24%	88.05%	89.01%
	\mathbf{FedAvg}	81.15%	83.18%	82.16%
	\mathbf{PL} -FL	76.70%	75.81%	75.77%
	L&PL-FL	71.43%	75.60%	72.43%
EMNIST	2PFL	94.4%	94.8%	96.00%
	\mathbf{FedAvg}	72.47%	86.10%	84.35%
	\mathbf{PL} -FL	53.30%	77.72%	83.45%
	L&PL-FL	84.38%	79.37%	78.20%
MEDMNIST	2PFL	95.38%	98.53%	98.92%
	\mathbf{FedAvg}	54.69%	74.39%	71.41%
	\mathbf{PL} -FL	49.76%	67.79%	59.54%
	L&PL-FL	86.45%	78.90%	74.88%

Experimental Results

Comparison assessment with baselines

		Baselines				2PFL		
Dataset	Performance	Ideal	${\bf FedAvg}$	PL-FL	L&PL-FL	Phase1	Phase2	Phase 2+
	Accuracy	97.92%	88.59%	79.65%	88.67%	96.93%	95.02%	97.31%
MNIST	LDR , $\phi \in (0.5, 0.9)$	87.08%	35.25%	36.22%	49.31%	80.51%	82.78%	94.70%
	Rounds	20	20	32	20	10	11	5
	Accuracy	88.76%	79.89%	76.70%	71.43%	86.24%	88.05%	89.01%
F-MNIST	$\mathbf{LDR}, \phi \in (0.5, 0.7)$	73.26%	20.11%	20.39%	49.31%	63.98%	70.77%	88.80%
	Rounds	20	20	20	20	10	7	5
	Accuracy	96.40%	72.47%	53.30%	84.38%	94.4%	94.80%	96.00%
EMNIST	LDR , $\phi \in (0.5, 0.9)$	66.3%	34.3%	39.37%	24.1%	63.525	67.07%	76.55%
	Rounds	20	18	15	20	10	10	8
	Accuracy	98.09%	54.69%	49.76%	86.45%	95.38%	98.53%	98.92%
	$\mathbf{LDR}, \phi \in (0.5, 0.9)$	84.1%	26.53%	31.7%	20.22%	51.02%	60.57%	82.91%
MedMNIST	Rounds	30	20	20	20	10	5	7

Experimental Results

Comparison assessment with baselines (across datasets)

Experimental Results

Impact of phases on model convergence & pseudo-labeling efficiency

- Our 2PFL framework addresses the challenge of training FL models across different types of clients with limited and skewed labeled and unlabelled data.
- By leveraging data augmentation, 2PFL leads to improved model performance and accelerates convergence by progressive pseudo-labelling.
- Our experiments highlight that 2PFL consistently outperforms baselines across various performance metrics and datasets.

The price for learning a global model with skewed and unlabeled data is minimal with 2PFL

Thank you!

Tahani Aladwani

School of Computing Science Knowledge & Data Engineering Systems