

The Price of Labelling: A Two-Phase Federated **Self-Learning Approach**

Tahani Aladwani, Christos Anagnostopoulos, Shameem Parambath, Fani Deligianni European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2024)

Introduction & Overview

Federated Learning (FL) is a distributed learning paradigm that allows multiple clients to collaboratively train Deep Learning (DL) models without sharing their private raw data.

Ideal Assumptions in Federated Learning (FL):

- > Supervised Learning: All clients possess training data with corresponding ground-truth labels.
- > Semi-Supervised Learning: A subset of clients have access to adequately labeled data.
- > High-Quality Pseudo-Labels: The model generates pseudo-labels for unlabeled data using only labeled data available during training.

Idea 2: 2PFL Training Phases

2PFL exploits labelled, partially labelled and unlabelled data across clients $(\mathcal{N}^L \cup \mathcal{N}^P \cup \mathcal{N}^U)_{n_i \in \mathcal{N}}$ to minimize the loss function $f^L(\theta_G)$, $f^{P}(\theta_{G})$, and $f^{U}(\theta_{G})$ over <u>labelled</u>, partially labelled & unlabelled clients:

$$\min_{\theta_G} f(\theta_G) = \frac{1}{\mathcal{N}^L} \sum_{\ell=1}^{\mathcal{N}^L} \mathcal{L}^L(x_\ell^L, y_\ell^L, \theta_G) + \frac{1}{\mathcal{N}^P} \sum_{\ell=1}^{\mathcal{N}^P} \mathcal{L}^P(x_\ell^P, y_\ell^P, \theta_G) + \frac{1}{\mathcal{N}^U} \sum_{\ell=1}^{\mathcal{N}^U} \mathcal{L}^U(x_\ell^U, y_\ell^U, \theta_G)$$

Phase 1: Engagement of Labelled & Partially Labelled Clients Phase 1 trains a global pseudo-labeling model $\theta_{c}^{(1)}$ from labelled data, using the ground-truth labels optimizing the loss:

In real-world FL senarios:

Data can be **non-IID**.

> Data across clients can be unlabeled , due to e.g., limited resources, labeling costs, human errors, etc.

Problem Fundamentals

What is the price of learning a global model using scarce & skewed labelled data, while capitalizing on partially labelled & fully unlabelled data across clients?

Overview of our Idea

A set $\mathcal{N} = \{n_1, \dots, n_{\mathcal{N}}\}$ of distributed clients categorized into:

 $\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)} = \boldsymbol{min}\left[\frac{1}{\mathcal{N}^{L}}\sum_{\ell=1}^{\mathcal{N}^{L}}\mathcal{L}_{CE}\left(\boldsymbol{x}_{\ell}; (\boldsymbol{\theta}_{\boldsymbol{G}}^{(1)}), \boldsymbol{y}_{\ell}\right)\right]$

Phases 2 & 2+: Engagement of Unlabelled Clients & Fine-tuning: The unlabelled clients (along with the rest) are engaged in Phase 2 to enhance the robustness of the global $\theta_{c}^{(2)}$.

Experimens

Impact of pseudo-labeling confidence on training phases

		Baselines				2PFL			
Dataset	Performance	Ideal	\mathbf{FedAvg}	\mathbf{PL} - \mathbf{FL}	L&PL-FL	Phase1	Phase2	Phase2+	
	Accuracy	97.92%	88.59%	79.65%	88.67%	96.93%	95.02%	97.31%	
MNIST	LDR, $\phi \in (0.5, 0.9)$	87.08%	35.25%	36.22%	49.31%	80.51%	82.78%	94.70%	
	Rounds	20	20	32	20	10	11	5	
	Accuracy	88.76%	79.89%	76.70%	71.43%	86.24%	88.05%	89.01%	
F-MNIST	LDR, $\phi \in (0.5, 0.7)$	73.26%	20.11%	20.39%	49.31%	63.98%	70.77%	88.80%	
	Rounds	20	20	20	20	10	7	5	
	Accuracy	96.40%	72.47%	53.30%	84.38%	94.4%	94.80%	96.00%	
EMNIST	$LDR, \phi \in (0.5, 0.9)$	66.3%	34.3%	39.37%	24.1%	63.525	67.07%	76.55%	
	Rounds	20	18	15	20	10	10	8	
	Accuracy	98.09%	54.69%	49.76%	86.45%	95.38%	98.53%	98.92%	

- Type I clients (labelled clients) having all data labeled.
- -Type II clients (partially labelled clients) having labelled & unlabelled data
- **—Type III** clients (**unlabelled clients**) where all data are unlabelled

2-Phase Federated Self-Learning Framework (2PFL)

	$\mathbf{LDR}, \phi \in (0.5, 0.9)$	84.1%	26.53%	31.7%	20.22%	51.02%	60.57%	82.91%
MedMNIST	Rounds	30	20	20	20	10	5	7

Comparison across datasets

Impact of phases on model convergence & pseudo-labeling efficiency

Effectiveness and efficiency of 2PFL against baselines w.r.t test accuracy, Labelled Data Ratio (LDR), number of training rounds.

- Accuracy vs. training rounds over all datasets (vertical dotted lines correspond to **T1**, **T1** + **T2** rounds of 2PFL's phases).
- > Pseudo-labelling ratio of unlabelled samples across datasets and phases.

Idea 1: Local Data Augmentation

2PFL adopts **MixUp** to augment data over each client.

In labelled/partially labelled client: for any two inputs x_k and x_ℓ with labels y_k and y_ℓ , MixUp synthesizes the sample (x', y'):

$$x' = \lambda x_k + (1 - \lambda) x_\ell$$
 and $y' = \lambda y_k + (1 - \lambda) y_\ell$

SEPTION SEPTIO

Conclusions

Our 2PFL framework addresses the challenge of training FL models across different types of clients with limited and skewed labeled and unlabelled data. *By leveraging data augmentation, 2PFL leads to improved model performance and accelerates convergence by progressive pseudo-labelling. *Our experiments highlight that 2PFL consistently outperforms baselines across various performance metrics and datasets.

The price for learning a global model with skewed and unlabeled data is minimal with 2PFL

This work is partially funded by the EU Horizon Grant

`Integration and Harmonization of Logistics Operations' TRACE (\#101104278).