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Abstract

In a general fair division model with transferable utilities we discuss
endogenous lower and upper guarantees on individual shares of benefits
or costs. Like the more familiar exogenous bounds on individual shares
described by an outside option or a stand alone utility, these guarantees
depend on my type but not on others’ types, only on their number and
the range of types. Keeping the range from worst share to best share
as narrow as permitted by the physical constraints of the model still
leaves a large menu of tight guarantee functions.

We describe in detail these design options in several iconic problems
where each tight pair of guarantees has a clear normative meaning:
the allocation of indivisible goods or costly chores, cost sharing of a
public facility and the exploitation of a commons with substitute or
complementary inputs. The corresponding benefit or cost functions
are all sub- or super-modular, and for this class we characterise the
set of minimal upper and maximal lower guarantees in all two agent
problems.

JEL classification codes: D6, D63

1 Introduction

Nash axiomatic bargaining model ([23]) and much of the work it inspired
acknowledge the importance of outside options, aka disagreement points,
critically limiting the range of mutually advantageous outcomes where the
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negotiation is headed. Steinhaus’ cake cutting model ([29]), another early
fair division model, sends a similar message: we can always give to each
agent a piece of the cake worth at least 1

n
-th of its total value to them, so

everyone’s actual share should be at least as good as this fair share.
In both cases the allocation of common property resources (the cake, the

outcomes they must jointly agree upon) is restricted by entitling each agent
to a specific guarantee, but there is a key difference: an outside option in
bargaining is an exogenous default this agent can exercise by herself, while a
fair share of the cake is an endogenous guarantee that she cannot implement
independently of others. A benevolent manager is needed to enforce the
latter, e. g. by playing a moving knife1 ([8]) or a divide and choose ([13])
game; the threat to engage in this severely inefficient mechanism has the
same deterring effect than an exogenous outside option.

The difference between the two types of wost case guarantee is especially
clear in the celebrated problem of the commons ([27], [26], [28]) where the
agents enter inputs in a common property production function. For instance
they pull their purchases to take advantage of a volume discount: the option
to “stand alone” at the non-discounted price is an exogenous upper bound
on my cost share if the seller accepts orders of small size. But a benchmark
price recognised by all participants can play the same role, even if small
orders are not currently available.

Endogeneity opens the door to design options in the many problems
where instead of a single optimal (largest) fair share the manager can choose
from a whole menu of maximal fair shares (that cannot be improved): this
choice is the object of our paper.

My fair share of the resources defines my worst case scenario, which is
why we want it large. But the dual concern to keep my best case scenario
low is important as well, lest other agents will object because it is too large.
If the commons produces output with decreasing returns,2 the stand alone
share I would get by using the commons all by myself is a compelling upper
bound on my share: any larger share forces the other agents to work for me
([17], [11]).

A first normative step toward interpreting common property is, in the
view presented here, to stake out ex ante the range of each agent’s own share
as a function of their own type (personal characteristics such as willingness
to pay, input effort, demand of output etc..) but not of other participants’

1The knife cuts an increasing share of the cake and whoever stops the knife first receives
that share; repeat.

2as opposed to the increasing returns of the bulk purchasing example.

2



types. Making this range as small as permitted by the feasibility constraints
of the resources facilitates agreement on an ex post compromise achieved
after direct negotiations, a fully scripted mechanism, or any other decision
making format.

In our abstract model of dividing benefits or costs, searching for the
tightest pairs of individual guarantees from below and above has a trans-
parently simple mathematical formulation as a functional inequality, given
in the next paragraph. There are two surprises. First, solving this set of
inequalities is quite hard and was within our reach only for relatively sim-
ple versions of familiar fair division models and some new variants: the
allocation of indivisible goods or costly chores and cash transfers, cost shar-
ing of a public facility and the exploitation of a commons with substitute
or complementary inputs. Second, in these examples each solution has a
rich normative meaning easily explained from the components of the model.
Some solutions confirm the relevance of familiar contradictory interpreta-
tions of common property; others propose appealing compromises between
these extreme views, or new guarantees in new problems.

We illustrate these points in section 2 by solving the inequalities for
perhaps the simplest cost or benefit function in the literature, interpretable
as sharing either the cost of a capacity, or one indivisible item with cash
transfers.

the functional inequality The general model has n agents, each with
their own type xi varying in a common domain X , and a symmetric benefit
(or cost) function W: from a profile of types x = (x1, · · · , xn) it returns the
total benefit (or cost) W(x) that will be divided between the n agents. The
technology W is the common property of the agents, all responsible for their
own type in X .

A lower guarantee g− and an upper guarantee g+ are real valued func-
tions on X such that:

n∑

1

g−(xi) ≤ W(x) ≤
n∑

1

g+(xi) for any x = (x1, · · · , xn) ∈ X [n] (1)

The high level mathematical goal is to find all solutions g−, g+ of these
inequalities. This amounts to describe in closed form the maximal lower
(resp. minimal upper) guarantees, those that cannot increase (resp decrease)
at any value x1 without violating (1) for some choice of x2, · · · , xn. They
are the tightest additively separable approximations of the function W from
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below and above. To the best of our knowledge, this mathematical question
is original.

fair shares in the literature After its appearance in the mathematical
cake cutting model, the concept of endogenous fair share played a central
role in the normative microeconomic literature of the allocation of common
property private commodities. There the ordinal version of the fair share
guarantee is the equal split welfare: that of consuming the physical 1

n
-th

share of the bundle we divide. It is the virtual initial endowment of the
competitive solution favored by microeconomists ([32], [31], [3], [22]). Im-
portantly these two definitions of the fair share are an instance of the general
concept of unanimity welfare or utility: the one I get if everyone else has
exactly the same preferences (or more generally, characteristics) as me and
we are treated equally (a minimal fairness requirement in that case). This
very concept is central throughout the paper.

We note that equal split defines the optimal fair share in these two
models only if preferences are convex in the Arrow Debreu model or utilities
are additive over the subsets of the cake. With monotone but non convex
preferences in the Arrow-Debreu model equal split still captures a maximal
lower guarantee, but it is not the only one and we do not know a single
other example; for a non atomic cake with general (non additive) utilities,
not even one maximal lower guarantee is known ([4]).

When the shared resource is a technology the first concept of fair share
was the stand alone utility mentioned above with its versatile role as a
lower or upper bound on welfare depending upon the returns to scale . The
unanimity welfare was not far behind, also switching roles between worst
and best case welfare for the same reasons ([27], [18], [19], [20], [10]).

In the last twenty years or so, a large stream of research at the interface
of computer science and microeconomics addresses the deterministic fair di-
vision of indivisible items (good or bad) with no cash compensations. Even
when utilities are additive over bundles of goods, the definition of a mean-
ingful fair share is a tough conceptual challenge still attracting considerable
attention. The first proposal of the MaxMinShare is an elegant adaptation
of the unanimity concept to the constraints: it is the utility of my worst
share in the best n-partition of these objects I can offer ([6]). But it is hard
to compute and also unfeasible in some (very) rare utility profiles (([25])).
Alternative concepts include a blunt 3

4 fraction of the MaxMinShare, always
feasible (([1])); the any price share ([2]) still occasionally unfeasible but
much easier to compute than the MaxMin Share; Hill’s bound, both feasible
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and easy to compute, when we can upper bound the relative weight of any
item ([12], [7], [16], [14]) and more.

Contrasting with the above streams of research, our model is mathemati-
cally (much) simpler and more versatile: our examples include the allocation
of indivisible private items (good or bad), cost sharing of a capacity or a
public facility, and several versions of the commons problem. But we rely
heavily on the assumption, typically absent in the literature just reviewed,
that utility is transferable via some numeraire like cash payments.

Contents Section 2 illustrates our methodology for the canonical function
W(x) = max1≤i≤n{xi} with two alternative interpretations as the allocation
of one indivisible object for which i is willing to pay xi, or sharing the cost
of a public capacity when xi is (the cost of) agent i’s need. Proposition 1
gives the full solution of inequalities (1).

Section 3 introduces the general model; the key definition of the contact
set of an extremal (maximal lower or minimal upper) guarantee: the set of
profiles x at which inequality (1) is an equality; and two critical Lipschitz and
differentiability properties that such guarantees inherit from the function W
(Lemmas 6,7).

Section 4 restricts attention to super (resp. sub) modular benefit or cost
functions. The Unanimity guarantee una(xi) = 1

n
W(xi, xi, · · · , xi) is the

smallest upper (resp. largest lower) guarantee (Proposition 2), which com-
pletely solves one side of the system (1). Moreover these functions admit
two canonical maximal lower (resp. minimal upper) incremental guaran-
tees (Proposition 3). In the commons problem we find (n − 2) additional
extremal guarantees of the same incremental type (Proposition 4), compro-
mising between the two canonical ones.

Sections 5 solves system (1) for the rich class of rank-separable functions
W of the form W(x) =

∑n
k=1wk(x

k) where (xk)n1 is the order statistics of
(xi)

n
1 . Theorem 1, a considerable generalisation of Proposition 1, describes

the (n − 1)-dimensional set of extremal guarantees for rank-separable and
modular functions W. Examples of such functions include sharing the cost
of connecting agents located on a line, sharing the output produced by the
median effort in the group, and other variations of the commons problem.

Theorem 2 in section 6 solves system (1) for all two agent problems with
a (strictly) super- or sub-modular function W. The dimension of the set of
solutions is infinite.

The difficulties toward solving system (1) with three or more agents are
illustrated in subsection 7.1 for the standard version of the commons prob-
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lem. Whether or not our extremal guarantees respect the decentralisation of
a benefit or cost in two independent sub-problems is discussed in subsection
7.2 for the allocation of multiple objects with additive utilities.

After some final take-home points in section 8, section 9 collects several
long proofs.

2 A canonical example

We describe the pattern of solutions of (1) in two of the simplest and most
familiar fair division problems formalised by the same function W.

sharing the cost of a capacity ([15]) The n agents share a public
facility (canal, runway...) adjusted to their different needs (for a canal more
or less wide or deep, for a short or long runway...). The cost of building
enough capacity to serve the needs of agent i is xi (we identify a need and
its cost); the cost of serving everyone, maxi∈[n]{xi}, must be divided in n

shares yi s. t.
∑

i yi = maxi∈[n]{xi}. The largest possible range of individual
needs xi is the interval [L,H] where 0 ≤ L < H.

assigning an indivisible good or bad The n agents must assign an
indivisible object that could be desirable (a good) or not (a bad, e. g., a
chore). Utilities are linear in money and described by a single real number
xi: if xi is positive agent i is willing to pay that much for the object, if xi is
negative our agent must be compensated at least |xi| to accept the object
(do the chore). Utilities vary in the real interval [L,H], so if L < 0 < H the
object can be a good for some agents and a bad for others.

For efficiency we must assign the object to an agent i s. t. xi =
maxj∈[n]{xj}. If agent j does not get the object and xj > 0 she deserves
some cash compensation from the efficient agent who gets it; if xi < 0 and
does the chore she definitely deserves some compensation because everyone
else would suffer even more to do it. In all cases the amount maxj∈[n]{xj}
(a benefit or a cost) will be divided in n shares yi: a cash transfer if agent i
does not get the object, and yi = xi −

∑
j 6=i yj if she does.

extremal guarantees Notice that “best share” means smallest cost share
yi in the capacity story but largest utility yi in the assignment story. Lower
and upper guarantees g− and g+ are real valued functions on [L,H] satis-
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fying the system

n∑

i=1

g−(xi) ≤ max
1≤i≤n

{xi} ≤
n∑

i=1

g+(xi) for all x ∈ [L,H]n (2)

We call the lower guarantee g− maximal if we cannot increase it at any
single value x1 without violating some left hand inequalities (LH) in (2).
There is in fact only one such function g− and it is very simple.

The Unanimity share una(x1) =
1
n
x1 is agent 1’s fair share of W(x) at

the unanimous profile where xj = x1 for all j. At such profile (2) implies
g−(x1) ≤ una(x1); moreover una(·) itself is a lower guarantee (the mean is
smaller than the max), therefore una is the largest of all lower guarantees,
and the only maximal one.

By contrast we show below that there is an infinite (one-dimensional)
set of minimal upper guarantees. The two end points of this set the Stand
Alone g+sa and Egalitarian g+ega guarantees:

g+sa(xi) = xi −
n− 1

n
L and g+ega(xi) =

1

n
H for all xi ∈ [L,H]

(we let the reader check that they meet the RH in (2))
The stand alone terminology is clear if L = 0: g+sa(xi) is the cost of the

capacity that i needs, or the utility of consuming the good object and pay
nothing to others. For other values of L we note that g+sa(L) =

1
n
L = una(L),

so the Stand Alone guarantee gives exactly this share to any agent with the
smallest type (need or willingness to pay). Therefore at other types xi the
upper guarantee g+sa(xi) is i’s share if everyone else is of type L and i is
standing alone.

To see that g+sa is minimal fix an arbitrary x1 and select xj = L for all
j ≥ 2: as these agents all get the share 1

n
L the LH in (2) implies that agent

1 gets at least g+sa(x1).
The egalitarian upper guarantee g+ega(xi) =

1
n
H, together with the una-

nimity lower bound, ensures that an agent with the largest type H gets
exactly 1

n
H. Hence an agent i with a lower type xi must pay exactly 1

n
H if

at least other agent is of type H: no one gets more than 1
n
H and H must

be distributed, therefore agent 1 must get that share too. In particular this
implies that g+ega is minimal.

The normative choice between g+sa and g+ega is stark. The stand alone
guarantee is easier on agents who need a small capacity than the egalitarian
one, and vice versa for agents with large needs. The opposite pattern holds
for the assignment of a good.
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Proposition 1: With the notation z+ = max{z, 0}, the minimal upper
guarantees g+p of W(x) = max1≤i≤n{xi} are parametrised by p ∈ [L,H] as
follows:

g+p (xi) =
1

n
p+ (xi − p)+ for all xi ∈ [L,H] (3)

where g+L = g+sa and g+H = g+ega.

Proof : Assume g+ is a minimal upper guarantee and set p = ng+(L).
At the unanimous profile xi ≡ L the RH in (2) implies p ≥ L. Minimality
implies that g+ increases weakly (Lemma 3 in section 3) so that g+(xi) ≥

1
n
p

for all xi; moreover if p > H we g+ > g+ega everywhere and g+ is not minimal,
hence p ≤ H.

Inequality (2) applied to xi and n−1 agents with utility L gives g+(xi) ≥
xi−

n−1
n

p; combining this with g+(xi) ≥
1
n
p gives g+ ≥ g+p . To check finally

that g+p meets the right inequalities in (2) is routine. �

Interpret the upper guarantee g+p to share the cost of a capacity: if xi ≤ p

agent i pays at least 1
n
xi and at most 1

n
p in the worst case. An instance of

the latter is when only one agent i∗ needs a capacity larger than p; this is
also the worst case for i∗ who pays, in addition to 1

n
p, the full incremental

cost xi∗ − p.
Interpret the guarantee g+p to assign an indivisible object: p could be the

market price for a good (if 0 < p < H) or a reference wage for performing
the chore (if L ≤ p < 0).

If the object is a good the inefficient agent i whose utility is below p can
get a benefit share of at most 1

n
p, while an efficient agent with xi ≥ p can

get at most xi −
n−1
n

p. Both upper bounds are reached if an efficient agent
has xi ≥ p while xj ≤ p for everyone else.

If we assign a bad an inefficient agent s. t. xi ≤ p pays at least 1
n
|p| and

at most 1
n
|xi|. But the efficient agent with a disutility for the chore below

the benchmark, |xi| < |p|, can be paid up to n−1
n

|p| so she may end up with
a net profit.

On Figure 1 it is clear that a (true) convex combination of g+sa and g+ega
is clearly another upper guarantee, however it is never minimal. One checks
easily that for any λ ∈]0, 1[ we have

{λg+sa + (1− λ)g+ega}(x1) > g+
λL+(1−λ)H(x1) for all x1 ∈]L,H[

The Corollary to Lemma 7 generalises this observation.

selecting a mini-maximising or mini-averaging pair of guarantees
Two natural selections in the family {g+p ;L ≤ p ≤ H} are the one minimising
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the maximal spread (over types) between the two share levels, or the average
spread over a given distribution of types; they solve respectively the two
programs

min
p

max
x1

{g+p (x1)− una(x1)} and min
p

∫ H

L

(g+p (t)− una(t))dt

(in the latter with the uniform distribution). The mini-maximising selection
is easily computed as p = 1

n
L + n−1

n
H and the mini-averaging one is p =

n
2n−1L+ n−1

2n−1H close to the midpoint of [L,H].

implementing the guarantees We do not discuss the role of the benev-
olent manager after the choice of a pair of guarantees. If all information
about individual types is public (as is typical in this section’s cost sharing
story, as well as the commons and facility location examples in sections 4
and 5) she can either enforce a deterministic division rule to distributeW(x)
among the n agents, or she can let the agents engage in unscripted face to
face negotiations for which the lower and upper guarantees set clear con-
straints on the final outcome. In both scenarios and everything in between,
choosing tight bounds on individual shares promotes participation: to the
mechanism by minimising the risk of playing badly, or to direct negotiations
by lowering the impact of being manipulated by agressive negotiators.

If types can be private information (as in this section’s assignment story
and Proposition 5 section 7) then an agent well informed about other par-
ticipant’s willingness to pay and predictable behavior after the guarantees
are in place can benefit by misreporting his type. The only agents from
which we expect a truthful report are those without such information and
unwilling to take risks: any over-reporting (resp. under-reporting) of my
type could (for certain configurations of other reported characteristics) hurt
me if I end up getting the object (resp. not getting it).

3 General model

The set of agents is [n] = {1, · · · , n} and X is their common set of relevant
types. A profile x = (xi)i∈[n] ∈ X [n] generates the efficient benefit or cost
W(x), where W is a symmetric real valued function of its n variables xi. We
assume throughout that X is a compact metric space and W is continuous.

Benefits or costs are transferable by cash payments or some other nu-
meraire. The variable yi is agent i’s net (dis)utility after cash transfers. The
(dis)utility profile y = (yi)i∈[n] is feasible iff

∑n
i=1 yi ≤ W(x) (the opposite

inequality for disutility) and efficient iff this is an equality.

9



3.1 lower and upper guarantees

Definition 1: The functions g− and g+ from X into R are respectively a
lower and an upper guarantee of W iff they satisfy the inequalities

n∑

i=1

g−(xi) ≤ W(x) ≤

n∑

i=1

g+(xi) for all x ∈ X [n] (4)

We write G
+,G− the sets of such guarantees.

Given g1, g2 ∈ G
− (resp. G

+) we say that g1 dominates g2 if g1(x) ≥
g2(x) (resp. g1(x) ≤ g2(x)) for all x ∈ X and g1 6= g2. The lower (resp.
upper) guarantee g ∈ G

− (resp. g+ ∈ G
+) is maximal (resp. minimal) if

increasing (resp. decreasing) its value at a single x1 ∈ X creates a violation
of the LH (resp. RH) inequality in (4) for some x−1 ∈ X [n−1]. We write G−

and G+ for the corresponding subsets of G− and G
+, and refer to G− ∪ G+

as the set of extremal guarantees of W.

Lemma 1 For ε = +,− every guarantee g ∈ G
ε�Gε is dominated by

an extremal one.

The omitted proof is a simple application of Zorn’s Lemma.

The restriction of W to the diagonal of X [n] define the unanimity share
of agent i:

una(xi) =
1

n
W(xi, xi, · · · , xi) (5)

Its importance is clear once we observe that (4) implies for any g−, g+ ∈
G

− ×G
+

g−(xi) ≤ una(xi) ≤ g+(xi) for all xi ∈ X (6)

Lemma 2
i) If una is a lower (resp. upper) guarantee it dominates each lower (resp.
upper) guarantee

una ∈ G
ε =⇒ Gε = {una} for ε = +,−

ii) The function una is both a lower and an upper guarantee if and only if
W(x) =

∑
i una(xi), i. e., W is additively separable.

The easy proof is again omitted.

3.2 topological properties

Lemma 3 If X is ordered by ≻ and W is monotone, so is every extremal
guarantee in Gε, for ε = +,−.
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Proof Fix g ∈ G
−. If xi ≻ x′i and g(xi) < g(x′i) define g̃(xi) = g(x′i)

and g̃ = g otherwise, then check that g̃ is still in G
−. Same argument for

G
+. �

The next result is the operational characterisation of extremal guaran-
tees.

Lemma 4 Fix ε = +,− and an equi-continuous function W in X [n].
i) An extremal guarantee in Gε is continuous in X .
ii) A guarantee g in G

ε is extremal if and only if

∀x1 ∈ X ∃x−1 ∈ X [n−1] :

n∑

i=1

g(xi) = W(x1, x−1) (7)

If equality (7) holds we call (x1, x−1) a contact profile of g at x1 ; the
set of such profiles is the contact set of g, written as C(g).

Proof Step 1. We fix g ∈ G− and check that it is upper-hemi-continuous.
If it is not there is in X some x1, a sequence {xt1} converging to x1, and
some δ > 0 such that g(xt1) ≥ g(x1) + δ for all t. Then we have, for any
x−1 ∈ X [n−1]

W(xt1, x−1) ≥ g(xt1) +

n∑

i=2

g(xi) ≥ (g(x1) + δ) +

n∑

i=2

g(xi)

Taking the limit in t of W(xt1, x−1) and ignoring the middle term we see
that we can increase g at x1 without violating (4), a contradiction of our
assumption g ∈ G−.

Step 2. Statement ii) “If” is clear. For “only if” we fix g ∈ G− and show
that it meets property (7). For any x1 ∈ X define

δ(x1) = min
x−1∈X [n−1]

{W(x1, x−1)−
n∑

i=1

g−(xi)}

and note that this minimum is achieved at some x−1 because the function
x−1 →

∑n
i=2 g

−(xi) is upper-hemi-continuous (step 1). Moreover δ(x1) is
non negative.

If δ(x1) = 0 property (7) holds at x−1. If δ(x1) > 0 we can increase g at
x1 to g(x1) + δ(x1), everything else equal, to get a guarantee dominating g.

Step 3. We fix g ∈ G− and check that it is lower-hemi-continuous. We write d
for the distance of the metric space X . By assumption W is equi-continuous
in its first variable, uniformly in the others:

∀η > 0,∃θ > 0,∀x1, x
∗
1, x−1 : d(x1, x

∗
1) ≤ θ ⇒ W(x1, x−1) ≤ W(x∗1, x−1) + η

(8)
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If g is not l.h.c. there is some x1 and {xt1} converging to x1 and δ > 0 s.t.
g(xt1) ≤ g(x1) − δ for all t. Pick θ for which (8) holds with η = 1

2δ and t

large enough that d(xt1, x1) ≤ θ: then for any x−1 we have

g(x1) +

n∑

i=2

g(xi) ≤ W(x1, x−1) ≤ W(xt1, x−1) +
1

2
δ

Replacing g(x1) with g(xt1) + δ gives g(xt1) +
∑n

i=2 g(xi) ≤ W(xt1, x−1)−
1
2δ

for any x−1: this contradicts the contact property (7) for xt1. �

Remark 1 The defining inequalities (4) imply at once that G
ε(W) is

closed under pointwise convergence. The same is true of Gε(W) by Lemma
4 and compactness of X .

Lemma 5
i) For ε = +,− and any x1 ∈ X there is an extremal guarantee g ∈ Gε s.t.
g(x1) = una(x1).
ii) The set Gε is a singleton if and only if it contains una. Moreover both
G− and G+ are singletons if and only if W is additively separable.

Note that statement i) does not imply that the graph of every extremal
guarantee g in Gε touches the unanimity function at some x1: in the com-
mons problem (subsection 4.3) Proposition 5 describes n extremal guaran-
tees of the incremental type of which n−2 never touch the unanimity graph;
see also Theorem 1 in section 5.

Proof Statement i) Fix ε = −, an arbitrary x̃1 ∈ X and write B(x̃1, r)
for the closed ball of center x̃1 and radius r. Use the notation ∆(x) =∑n

1 una(xi)−W(x) to define the function

δ(x1) = max{∆(x1, x−1) : xi ∈ B(x̃1, d(x1, x̃1)) for i ≥ 2}

It is clearly continuous, non negative because ∆(x1, x−1) = 0 if xi = x1
for all i ≥ 2, and δ(x̃1) = 0. Define g = una − δ and check that g is the
desired lower guarantee of W. At an arbitrary profile x = (xi)

n
1 choose xi∗

s.t. d(x̃1, xi∗) is the largest: this implies δ(xi∗) ≥ ∆(x). Combining this
with δ(xi) ≥ 0 for all i 6= i∗ gives

∑n
1 δ(xi) ≥ ∆(x) which, in turn, is the

left hand inequality in (4) for g. As g is in G
−, it is dominated by some g̃

in G−(Lemma 1) and g̃(x1) = una(x̃1) by inequality (6).

Statement ii) We assume that G− does not contain una and check that G−

is not a singleton. This assumption and the continuity of W imply that for
an open set of profiles x ∈ X [n] we have

∑
i una(xi) > W(x). Fix such an

12



x and (invoking Lemma 1) pick for each i a maximal guarantee gi equal to
una at xi: these n guarantees are not identical.

The second part of statement ii) follows from statement ii) in Lemma
2. �

3.3 the Lipschitz and differentiability properties

They are key to the characterisation results in sections 5, 6 and 7. If (x1, x−1)
is a contact profile of g, we also say that x−1 is a contact profile of g at x1.

Lemma 6 Fix any ε = +,− and g in Gε. For any x1, x
′
1 and any

contact profile x−1 of g at x1 we have
if ε = +

g(x′1)− g(x1) ≥ W(x′1, x−1)−W(x1, x−1) (9)

and the opposite inequality if ε = −.

Proof In the inequality

g(x′1) +
n∑

i=2

g(xi) ≤ W(x′1, x−1)

we replace each term g(xi) by W(x1, x−1) −
∑

j 6=i g(xj) and rearrange the
resulting inequality to

(n− 1)(W(x1, x−1)− g(x1)) + (n − 2)

n∑

i=2

g(xi) ≤ W(x′1, x−1)− g(x′1)

⇐⇒ W(x1, x−1)− g(x1) + (n− 2)(W(x)−

n∑

i=1

g(xi)) ≤ W(x′1, x−1)− g(x′1)

and the claim follows because x−1 is a contact profile for g at x1. �

Lemma 7
i) If K is a positive constant and W is K-Lipschitz in each xi, uniformly
in x−i ∈ X [n−1], so is each g in G− ∪ G+.
ii) Suppose X = [L,H] is an interval in some RA where A is a finite set.
We fix x1 ∈ X , an extremal guarantee g ∈ G− ∪ G+ and a contact profile
x−1 ∈ X [n−1] of g at x1. If g and W(·, x−i) are both differentiable in x1a
at x1 for some a ∈ A, we have

dg

dx1a
(x1a) =

∂W

∂x1a
(x1, x−1) if La < x1a < Ha (10)

13



dg

dx1a
(x1a) ≤

∂W

∂x1a
(x1, x−1) if x1 = L and g ∈ G− or x1 = H and g ∈ G+

dg

dx1a
(x1a) ≥

∂W

∂x1a
(x1, x−1) if x1 = H and g ∈ G− or x1 = L and g ∈ G+

Proof Statement i) If g ∈ G− property (9) and the Lipschitz assumption
imply g(x1) − g(x′1) ≤ K‖x1 − x′1‖ (where ‖ · ‖ is the norm w. r. t. which
W is Lipschitz). Exchanging the roles of x1 and x′1 gives g(x′1) − g(x1) ≤
K‖x′1 − x1‖ and the conclusion.

For statement ii) note that if the functions f, g of one real variable z are
differentiable at some z0 in the interior of their common domain and the
inequality f(z) − f(z0) ≥ g(z) − g(z0) holds for z close enough to z0, then
their derivatives at z0 coincide. Apply this to the functions x1a → g(x1)
and x1a → W(x1, x−1) and the inequalities (9). The last two inequalities
are equally easy to check. �

Note that in the real line the Lipschitz property in statement i), that
we call uniformly Lipschitz by a slight abuse of terminology3, implies differ-
entiability almost everywhere. All our examples in sections 5 and 7 involve
functions W uniformly Lipschitz in this sense, therefore all corresponding
extremal guarantees are differentiable almost everywhere in each coordinate
of xi.

Corollary Suppose X = [L,H], W is differentiable in [L,H][n] and for
ε = +,− the extremal guarantees in Gε are a. e. differentiable. Then an
extremal guarantee is characterised by its contact set C(g):

C(g) = C(h) =⇒ g = h for any two g, h ∈ Gε

Moreover any (true)convex combination of two or more guarantees in Gε

stays in G
ε but leaves Gε.

Proof. Suppose on the contrary that G− contains g, h and 1
2 (g + h), all

different. Fix x1 ∈]L,H[ and a contact profile x̃−1 of
1
2(g+h) at x1. Clearly

x̃−1 is also a contact profile of g and of h at x1. Therefore by statement
ii) in Lemma 7, almost surely in x1 ∈]L,H[ we have dg

dx1
(x1) =

dh
dx1

(x1) =
∂1W(x1, x̃−1). We conclude that g−h is a constant, and if it is not zero one
of g, h is not maximal. The argument for larger convex combinations with
general weights is entirely similar. �

3Because we only require the Lipschitz property in each coordinate.
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4 Sub- and super-modular functions W

In this class of benefit and cost functions that includes most of our examples,
the analysis of extremal guarantees greatly simplifies and this is key to the
characterisation results of sections 5 and 6.

From now on until section 6 included, the type space X is a real interval
[L,H].

Definition 2 We call W supermodular if for all i, j ∈ [n] and x, x′ in
X [n] such that xk = x′k for all k 6= i, j we have

{xi ≤ x′i and xj ≤ x′j} =⇒ W(x′i, xj ;x−i,j)+W(xi, x
′
j ;x−i,j) ≤ W(x)+W(x′)

(11)
We say that W is strictly supermodular if whenever (xi, xj) ≪ (x′i, x

′
j) the

RH inequality in (11) is strict. And W is submodular if the opposite in-
equality holds under the same premises.

Whenever the partial derivative ∂iW(x) is defined in a neighborhood
of x, super- (resp. sub-) modularity implies that it is weakly increasing
(resp. decreasing) in xj for all j 6= i. If ∂iW(x) is strictly increasing (resp.
decreasing) in xj then W is strictly super- (resp. sub-) modular.

Whenever ∂iW(x) is differentiable almost everywhere, the supermodu-
larity property can be written as

∂ijW(x) ≥ 0 for all i, j ∈ [n], i 6= j and a. e. in x ∈ [L,H][n]

(and the opposite inequality for submodularity).
A well known consequence of super- (or sub-) modularity is this: if

(xi, xj) ≪ (x′i, x
′
j) and the RH inequality in (11) is an equality, then in the

interval [(xi, xj), (x
′
i, x

′
j)] the function (zi, zj) → W(zi, zj ;x−i,j) is separably

additive and its cross derivative ∂ijW(zi, zj ;x−i,j) is identically zero. We
say that W is locally i, j-additive at the profile x if there is a rectangular
neighborhood of (xi, xj) in which ∂ijW(·;x−i,j) is zero.

A strictly super- or sub-modular function like (in subsection 4.3 below)
W(x) = F (

∑
i xi) with F strictly convex or concave is not i, j-additive

anywhere. But the function W(x) = maxi{xi} (section 2) is locally i, j-
additive whenever xi 6= xj (hence almost everywhere).

4.1 the unanimity guarantee is dominant on one side

This result explains the central role of the unanimity shares in the modular
class of benefit and cost functions.
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Notation: when the ordering of the coordinates does not matter (z;
k
y)

represents the (k + 1)-vector where one coordinate is z and k coordinates
are y.

Proposition 2 If W is supermodular (resp. submodular), the unanimity
utility (5) is the smallest upper (resp.largest lower) guarantee: G+ = {una}
(resp. G− = {una}).

Proof We only do the proof for a supermodular W; just exchange a few
signs for a submodular one.
Step 1. We check una ∈ G+ first if n = 2. Pick two arbitrary types x1, x2 ∈
[L,H], write δ = x2 − x1 and consider the following function f and its
derivative on [0, 1]:

f(λ) = 2W(x1 + λδ, x2)− (W(x1 + λδ, x1 + λδ) +W(x2, x2))

df

dλ
(λ) = 2δ(∂1W(x1 + λδ, x2)− ∂1W(x1 + λδ, x1 + λδ))

Supermodularity implies that the term in parenthesis is zero or has the sign
of x2 − (x1 + λδ) = (1− λ)(x2 − x1); so its product with δ is non negative.
This implies

f(1) = 0 ≥ f(0) = 2W(x1, x2)− (W(x1, x1) +W(x2, x2))

as desired.

Step 2 Induction on n. Assume statement i) holds up to (n− 1) and fix an
arbitrary n-person supermodular benefit W and profile x in X [n]. For any
fixed i and xi this implies that una is an upper guarantee of the (n − 1)-
benefit function W(·;xi):

W(x) ≤
1

n− 1

∑

j 6=i

W(xi;
n−1
xj )

=⇒ nW(x) ≤
1

n− 1

∑

(i,j)∈P

W(xi;
n−1
xj ) (12)

where P is the set of ordered pairs (i, j) in [n].
Apply next the inductive assumption to the function W(·;xj) of (n−1)-

variables at (
n−2
xj ;xi):

W(xi;
n−1
xj ) ≤

1

n− 1
((n− 2)W(

n
xj) +W(xj;

n−1
xj ))
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Summing up both sides over all (i, j) ∈ P and writing S for the summation
in the RH of (12) gives

S ≤
1

n− 1
S + (n− 2)

n∑

j=1

W(
n
xj) =⇒ S ≤ (n− 1)

n∑

j=1

W(
n
xj)

Combining (12) with the latter inequality concludes the proof. �

Lemma 8 If W is strictly supermodular a maximal lower guarantee
g ∈ G− can have at most one unanimous contact point:

{g(x̃1) = una(x̃1) at some x̃1} =⇒ {g(x1) < una(x1) for all x1 6= x̃1}

The same is true if W is strictly submodular for minimal upper guarantees.

Proof Fix W, g ∈ G− as in the first statement and suppose g has two

unanimous contact profiles
n

(x1) and
n

(x2) such that x1 < x2. Strict super-
modularity implies, by repeated application of (11):

W(x2;
n−1
x1 )−W(

n
x1) < W(

n
x2)−W(x1;

n−1
x2 )

⇐⇒ W(x2;
n−1
x1 ) +W(x1;

n−1
x2 ) < W(

n
x1) +W(

n
x2)

By our choice of x1, x2 the RH in the last inequality is written as

ng(x1) + ng(x2) = (g(x2) + (n− 1)g(x1)) + (g(x1) + (n− 1)g(x2)) ≤

≤ W(x2;
n−1
x1 ) +W(x1;

n−1
x2 )

and we have reached a contradiction. �

Combining Lemmas 5 and 8 with Proposition 2 we see that if W is
strictly supermodular:
the unanimity function is the unique minimal upper guarantee; there is
an infinite set of maximal lower guarantees, each one with at most one
unanimous contact point; and each unanimous profile is the contact point
of at least one maximal lower guarantee. A symmetric statement holds for
a strictly submodular function W.

Extremal guarantees without any unanimous contact point are not a
pathological occurrence: Proposition 4 in subsection 4.3 describes a clean
family of such guarantees in the commons problem; more examples are in
subsection 5.2.
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4.2 two canonical incremental guarantees

All modular functions share two very simple and familiar extremal guaran-
tees.

Proposition 3 If W is supermodular (resp. submodular ) the equations

ginc(xi) = W(xi;
n−1
L )− (n− 1)una(L) (13)

ginc(xi) = W(xi;
n−1
H )− (n− 1)una(H) (14)

define two maximal lower (resp. minimal upper) guarantees in G− (resp.
G+) with unanimous contact points are at L and H respectively. We call
them L-incremental and H-incremental.

Under ginc the type L agent is the only one whose share is una(L) irre-
spective of the distribution of other’s types. If W is sub-modular and W(x)
is a cost to share, this is good news because una(L) is the unambiguous max-
imal lower bound of his cost share (Proposition 2). These interpretations
flip twice: when we change cost to benefits and sub to supermodular.

An example is the cost function W0(x) = maxi∈[n]{xi} in section 2 where
ginc = g+sa and ginc = g+ega are the end points of G+ (Proposition 1): this
confirms that g+sa favors type L and g+ega favors type H.

Actually the generic upper guarantee g+p also takes the incremental form
starting from p:

g+p (xi) =
1

n
p+ (xi − p)+ = W0(xi;

n−1
p )− (n− 1)una(p)

Theorem 1 in the next section 5 generalises this observation to a large class
of benefit or cost functions.

Proof of Proposition 3 We give it for ginc and W supermodular; it is
identical for ginc and/or W submodular by the usual inequality flips.

Check first that (13) defines a lower guarantee (4). If n = 2 this reduces
to

W(x1, L) +W(x2, L) ≤ W(x1, x2) +W(L,L)

a direct consequence of supermodularity (11).
Proceeding by induction on n, we assume that (13) defines a lower guar-

antee in problems with up to n− 1 agents. Fix a supermodular function W
and a profile x in [L.H]n. We rearrange the LH of (4) for ginc as

T =

n∑

i=1

W(xi;
n−1
L ) ≤ W(x) + (n − 1)W(

n

L) (15)
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Because (13) define a lower guarantee of the 2-benefit function W(·;
n−2
L )

we have for all pairs i, j in [n]

W(xi, L;
n−2
L ) +W(xj , L;

n−2
L ) ≤ W(xi, xj ;

n−2
L ) +W(

n

L)

Summing up these inequalities over the set Q of non ordered pairs in [n]
yields, after some rearranging

T ≤
1

n− 1

∑

(i,j)∈Q

W(xi, xj ;
n−2
L ) +

n

2
W(

n

L) (16)

We fix agent i and write inequality (4), rearranged as (15), for the function
ginc of the (n− 1)-benefit W(xi; ·):

∑

j 6=i

W(xi;xj ,
n−2
L ) ≤ W(x) + (n− 2)W(xi;

n−1
L )

Summing up over all i gives

2
∑

(i,j)∈Q

W(xi, xj ;
n−2
L ) ≤ nW(x) + (n− 2)T

Combining this last inequality and (16) gives

T ≤
n

2(n− 1)
W(x) +

n− 2

2(n − 1)
T +

n

2
W(

n

L)

which, after some more rearranging is the desired inequality (15).

Step 4: ginc is maximal. Definition (13) implies ginc(L) = una(L) and

ginc(x1) + (n− 1)ginc(L) = W(x1;
n−1
L ) for all x1

and by Lemma 4 we are done. �

4.3 the commons problem

In this much studied model (see section 1) an increasing and continuous
function F transforms non negative inputs xi ∈ [L,H] by the n agents
(L ≥ 0) into an output that they must share.

Example 1.A Commons with complementary inputs
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Here W(x) = F (mini xi) so the inputs are perfect complements. The
function W is supermodular, and the problem is actually isomorphic to the
canonical one in section 2 by changing the type variable yi = F (xi), inverting
signs to turn max into a min and checking that the solutions of (4) commute
with these changes. So una(xi) = 1

n
F (xi) is the smallest upper guarantee

and the maximal lower guarantees are parametrised by p ∈ [L,H] as

g−p (xi) =
1

n
F (p) + min{F (xi)− F (p), 0} for x1 ∈ [L,H]

Any input (effort) xi weakly above the bechmark p guarantees at least the
share 1

n
F (p) and at most 1

n
F (xi). A “slacker” inputing xi < p can get as low

as F (xi)−
n−1
n

F (p) which can be negative. For instance g−p (0) = −n−1
n

F (p)
if L = 0 and F (0) = 0: no output is produced if x1 = 0 and agent 1, perhaps
helped by other slackers s. t. g−p (xi) < 0, if any, pays in cash 1

n
F (p) to each

“responsible” agent whose (wasted) effort reaches the benchmark.4

It is much harder to solve system (4) in the more familiar case where the
inputs are perfect substitutes: W(x) = F (

∑
i xi). Recall the dual interpre-

tation of this case where xi is agent i’s demand of output and yi the share
of the input she must contribute.

In addition to the two incremental guarantees in Proposition 3, we
discover n − 2 other extremal guarantees of the same incremental type
g(x1) = W(x1, c−1)− γ (where c−1 and γ are constant).

Proposition 4 Commons with substitutable inputs
i) If F is concave (resp. convex) and increasing on [L,H] ⊂ R+ the function
x → W(x) = F (

∑
i xi) is submodular (resp. supermodular) and admits the

following minimal upper (resp. maximal lower) guarantees gℓ,h, where ℓ, h

are two non negative integers s. t. ℓ+ h = n− 1. For all xi ∈ [L,H]

gℓ,h(xi) = F (xi + (ℓL+hH))− {
ℓ

n
F ((ℓ+1)L+ hH)+

h

n
F (ℓL+ (h+1)H)}

(17)
Here gn−1,0 = ginc and g0,n−1 = ginc are the two guarantees identified in
Proposition 3.
ii) If F is strictly concave (resp. convex) only ginc and ginc have an unan-
imous contact point.

Proof For easier reading we set Z = ℓL+ hH.
Statement i) The concavity of F implies at once that W is submodular.

4Of course this matches the interpretation of Proposition 1 for assigning a bad in section
2.
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We check first the feasibility inequality (4) which we rewrite as

∑

i

F (xi + Z) ≥ F (xN ) + ℓF (Z + L) + hF (Z +H) (18)

The partial derivatives (defined a. e.) of the function π(x) =
∑

i F (xi +
Z) − F (xN ) are ∂π

∂xi
(x) = dF

dx
(xi + Z) − dF

dx
(
∑

i xi) therefore its gradient

∆π(x) is such that we have for all x, x′ ∈ [L,H][n]

< ∆π(x)−∆π(x′), x− x′ >=
∑

i

(
dF

dx
(xi +Z)−

dF

dx
(x′i +Z)).(xi − x′i) ≤ 0

because dF
dx

decreases weakly. Therefore π is concave, moreover ∆π(x) = 0

at x = (
n
1

n−1Z) where π reaches its minimum. So (18) reduces to

(n− 1)F (
n

n − 1
Z) ≥ ℓF (Z + L) + hF (Z +H)

which is just the concavity inequality for F .
To check that gℓ,h is maximal we fix x1 and invoke Lemma 4 at the profile

(x1,
ℓ

L,
h

H) where we compute

gℓ,h(x1) + ℓgℓ,h(L) + hgℓ,h(H) = F (x1 + ℓL+ hH)

Statement ii) If gℓ,h has a unanimous contact point at x1 we have

nF (x1 + Z) = F (nx1) + ℓF (Z + L) + hF (Z +H)

If F is strictly concave and ℓ, h are both positive this contradicts the
concavity inequality. If ℓ or h is zero we find ginc and ginc with unanimous
contact points at L and H respectively. �

Example 6 in subsubsection 7.1 describes another family of extremal
guarantees in the commons problem: it is infinite of dimension 1 and, like
the discrete family just described, it connects the two canonical incremental
guarantees; all elements of the family have a unanimous contact point.

Example 1.B: Commons with multiplicative inputs
Each agent i contributes an effort input xi in [L,H] and total output is

the product of individual efforts

W(x) = x1x2 · · · xn for x ∈ [L,H][n]
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For instance [L,H] ⊂ [0, 1], the effort xi is the probability that agent i

“succeeds” (independent of other agents’ efforts) and one unit of output is
produced if and only if everyone succeeds.

The simple change of variable yi = ln(xi) and of function

W̃(y) = exp(
∑

i

yi)

shows that this problem is isomorphic to the commons with substitutable
inputs and convex production function F = exp. Both W and W̃ are su-
permodular and the maximal lower guarantee g̃ℓ,h described in Proposition

4 for W̃ corresponds to ĝℓ,h for W:

ĝℓ,h(xi) = LℓHh(xi −
1

n
(ℓL+ hH))

The two incremental guarantees in Proposition 3, for ℓ or h = n− 1 are

ĝinc(xi) = Ln−1(xi −
n− 1

n
L) and ĝinc(xi) = Hn−1(x−

n− 1

n
H)

Their graphs are tangent to the unanimity function una(xi) =
1
n
xni at L

and H respectively.5

If L > 0 then ĝinc(xi) is strictly positive for all xi: providing a minimal
effort L is not punished, it still guarantees the share una(L). On the contrary
ĝinc rewards high effort and guarantees una(H) for the effort level H: this is
feasible by charging penalties to the “slackers” who input less than n−1

n
H.6

The n − 2 other lower guarantees ĝℓ,h allow the manager to adjust the
critical effort level ℓL+hH

n
guaranteeing a positive benefit share along a n-grid

from L to n−1
n

H.

5 Rank-separable functions and general incremen-

tal guarantees

We solve completely the functional inequality (4) for a large class of functions
W in which W0(x) = maxi xi (section 2) is the simplest element.

5Whereas with substitutable inputs their graphs are translations of that of F .
6For instance if all agents but 1 input effort H while agent 1 only provides effort L,

the latter must pay |gsa(L)| = Hn−1(n−1
n

H − L); if L = 0 this agent must pay una(H)
to every agent inputing the effort H !
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The function W0 is submodular but not strictly so. For any distinct
i, j ∈ [n] and x ∈ X it satisfies

for all i, j ∈ [n] and x ∈ [L,H][n] : xi 6= xj =⇒ ∂ijW(x) = 0 (19)

This is the defining property of the class in question. Applying (19) in
the convex open subset of [L,H][n] defined by the strict inequalities x1 <

x2 < · · · < xn we see that W must be separably additive. Because W is
symmetric in its variables this defines W(x) whenever all coordinates of x
are different, and finally everywhere as W is continuous.

Notation: (x1, x2, · · · , xn) is the decreasing order statistics of x = (x1, · · · , xn)
(so x1 = maxi xi and xn = mini xi).

Definition 3 The function W on [L,H][n] is called rank-separable if
there exist n weakly increasing, equicontinuous real valued functions wk on
[L,H] s. t. wk(L) = wℓ(L) for all k, ℓ ∈ [n] and

W(x) =

n∑

k=1

wk(x
k) for all x ∈ [L,H][n] (20)

Lemma 9 The function (20) is supermodular if and only if we have

for all k ∈ [n]:
dwk

dx
(xi) ≤

dwk+1

dx
(xi) a. e. in xi ∈ [L,H] (21)

and is submodular iff the opposite inequalities hold.

Proof Note first that “xi is of rank k in a certain profile” only makes
sense if xi is different from any other coordinate.

Fix W defined by (20): it is equicontinuous and weakly increasing. For
“only if” we assume thatW is supermodular.Fix two agents i, j and a (n−2)-
profile x−ij ∈ [L,H][n]�i,j. For any 4-tuple xi, yi, xj , yj such that xi > yi
and xj > yj supermodularity means

W(xi, xj ;x−ij)−W(yi, xj ;x−ij) ≥ W(xi, yj;x−ij)−W(yi, yj;x−ij) (22)

Suppose L < yi < xi < H and pick an arbitrary rank k, k ≤ n − 1: we
can choose x−ij, xj and yj s. t. in the profiles on the RH xi and yi are of
rank k, while after increasing yj to xj they are of rank k + 1 in the profiles
on the LH. Then the inequality (22) reads

wk+1(xi)− wk+1(yi) ≥ wk(xi)− wk(yi)

As xi, yi can be chosen arbitrary close to each other, this proves (21) at any
interior point of [L,H] where wk is differentiable (that is, a. e.).
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For “if” we assume (21) and fix x−ij. For any xi, yj s. t. xi has rank k

in (xi, yj;x−ij) we have ∂iW(xi, yj;x−ij) =
dwk

dx
(xi) (a. e.): if yj is below xi

and jumps up to xj above xi then by (21) ∂iW(xi, xj ;x−ij) also increases

(weakly) to
dwk+1

dx
(xi). If xi is not isolated in the profile (xi, yj;x−ij) the

same argument applies to the left and right derivatives of W in xi. �

Our first main result is that all extremal guarantees of any modular
rank-separable function are of this same simple form.

Theorem 1 Fix a rank-separable and super-(resp. sub-)modular func-
tion W as in Lemma 9.
i) Each choice of c = (c1, · · · , cn−1) ∈ [L,H]n−1 defines a maximal lower
(resp. minimal upper) guarantee as follows:

gc(xi) = W(xi; c)−
1

n

n−1∑

k=1

W(ck; c) for all xi ∈ [L,H] (23)

ii) Conversely every maximal lower (resp. minimal upper) guarantee of W

takes this form.

Proof in the Appendix.

Note that if the parameter c = (
n−1
c0 ) is unanimous the corresponding

extremal guarantee is

gc0(xi) = W(xi;
n−1
c0 )−

n− 1

n
W(

n
c0)

precisely similar to the two canonical incremental guarantees, with a unan-
imous contact profile (

n
c0). Just after the statement of Proposition 3 we

noticed that this captures all the minimal upper guarantees of the canonical
W0(x) = maxi xi.

Example 2.A Cost sharing of a capacity (revisited)
In this more refined version of the cost sharing story in section 2 we

take into account congestion costs. Given a profile of demands x the first
xn units of capacity are used by everyone so their per unit cost γn is higher
than γn−1, that of the next (x

n−1−xn) units used by only n−1 agents, and
so on. With the conventions xn+1 = γ0 = 0 we define wk = γk − γk−1 and
the cost function

W(x) =

n∑

k=1

γk(x
k − xk+1) =

n∑

k=1

wkx
k for x ∈ [L,H][n]

24



By Lemma 9 W is super- (resp. sub-) modular iff γk − γk−1 decreases
weakly in k, i. e., the marginal cost of congestion increases (resp. decreases)
weakly with the congestion. Both properties are plausible in different con-
texts, and Theorem 1 describes the sets G+ and G− in both cases.

With two agents and concave congestion costs W(x) = w1x
1+w2x

2 with
w1 > w2 > 0. The set G+ is parametrised by c ∈ [L,H] as follows:

gc(xi) = w2xi+
1

2
(w1−w2)c for xi ∈ [L, c] ; = w1xi−

1

2
(w1−w2)c for xi ∈ [c,H]

gc(xi) ≥
1

2
(w1 + w2)xi = una(xi) for xi ∈ [L,H]

The manager looking to minimise the maximal gap max0≤xi≤H{gc(xi)−
una(xi)} will choose c = 1

2(H + L). If instead they minimise the expected
gap for a given distribution of types, the computations remain simple. With
three or more agents the corresponding optimisations problems are still lin-
ear programs.

Example 2.B Sharing the cost of being connected ([24])
After each agent i chooses a location xi in the interval [L,H] the manager

must cover the cost of connecting them (e g by building a road) which we
assume linear in the largest distance between agents:

W(x) = x1 − xn for x ∈ [L,H][n]

The high level question is whether one should be penalised for being far
away at the periphery of the distribution of agents, and if so, by how much.
Once again the extremal guarantees go a long way toward answering this
question, while still leaving much room to choose precise shares between
those bounds.

The cost is submodular and the largest lower guarantee is una(xi) ≡ 0:
everyone’s best case is to pay nothing (if they happen to be on the same
spot). By Theorem 1 a minimal upper guarantee involves the choice of n−1
variables ck but it is easy to check in equation (23) that for any n ≥ 3 only
the largest and smallest values c+ and c− matter:

gc(xi) = (max{xi, c
+} −min{xi, c

−})−
n− 1

n
(c+ − c−) for xi ∈ [L,H]

where c = (c+, c−). Writing µ = 1
n
(c+ − c−) we develop gc as follows

gc(xi) = µ if c− ≤ xi ≤ c+

gc(xi) = µ+ (c− − x) if L ≤ xi ≤ c−; g
c
(xi) = µ+ (x− c+) if c+ ≤ xi ≤ H
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So an agent with type in the benchmark interval [c−, c+] has the small-
est possible worst cost share µ, and one outside this interval could pay, in
addition to µ, the full connecting cost to the benchmark.

If c− = c+ = c∗ an agent locating at c∗ pays nothing (irrespective of
other agents’ location) and gc(xi) = |x − c∗|. While if [c−, c+] = [L,H] the
worst cost share is 1

n
(H −L) for everybody. These resemble the stand alone

and egalitarian upper guarantees of section 2.

Remark 2 Sharing the traveling costs to the median. Assume the facility
is located at the median of the agents to minimise the transportation costs
that they must share. If n = 2q + 1 total costs are W(x) =

∑q
k=1 x

k −∑q
ℓ=1 x

ℓ+q+1, again submodular by Lemma 9 and again una(xi) ≡ 0. But
now the choice of a rank-specific minimal upper guarantee in Theorem 1
involves 2q parameters and allows a much more nuanced evolution of shares.

Example 2.C Ranked commons
Fix a rank k ∈ [n]. Each agent i produces an individual effort xi; to

achieve the output level y = F (z) we need at least k agents contributing an
effort at least z:

Wk(x) = F (xk) for x ∈ [L,H]n] (24)

where F is continuous and increasing.
This function is neither sub- nor super-modular (even if F is linear) and

una(xi) =
1
n
F (xi) is not a lower guarantee unless k = 1, and not an upper

guarantee unless k = n. It is nevertheless easy to describe the sets G±
k . The

proof given in the appendix mimicks that of Proposition 1.
For k ≤ n− 1 the set G+

k is parametrised by p ∈ [L,H] as follows:

g+k,p(xi) =
1

n
F (p) +

1

k
(F (xi)− F (p))+ for xi ∈ [L,H]

and G+
n = {una}.

Similarly for k ≥ 2 the set G−
k is parametrised by q ∈ [L,H] as:

g−k,q(xi) =
1

n
F (q) +

1

n− k + 1
(F (xi)− F (q))−

and G−
1 = {una}.

Unlike in all our other examples (starting with Proposition 1) there is
here a choice for both upper and lower bounds.

If p = q this benchmark effort guarantees the share 1
n
F (p) = una(p); if

p 6= q we have g+k,p(xi) < g−k,q(xi) for all xi. See Figure X.
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6 Two agents: general characterisation

We fix X = [L,H] and a supermodular function W(x1, x2) on X 2. If g ∈ G−

is a maximal lower guarantee its contact correspondence ϕ

ϕ(x1) = {x2 ∈ [L,H]|g(x1) + g(x2) = W(x1, x2)} (25)

is non empty at each x ∈ [L,H] (Lemma 4). Its graph is written Γ(ϕ).

Lemma 10 If Γ(ϕ) contains (x1, x2) and (x′1, x
′
2) s.t. (x1, x2) ≪

(x′1, x
′
2), then (x1, x

′
2), (x

′
1, x2) ∈ Γ(ϕ) as well, and W is not strictly su-

permodular.
Proof We sum up the two equalities in (25) for (x1, x2) and (x1′, x2′):

W(x1, x2)+W(x′1, x
′
2) = {g(x1)+g(x′2)}+{g(x′1)+g(x2)} ≤ W(x1, x

′
2)+W(x′1, x2)

Combined with the supermodular inequality (11) this gives an equality. �

Lemma 11 Fix n = 2 and a strictly super- (resp. sub-)modular benefit
function W (Definition 2 section 4). Then for any g ∈ G− (resp. G+) with
contact correspondence ϕ we have:
i) Γ(ϕ) is symmetric: x2 ∈ ϕ(x1) ⇐⇒ x1 ∈ ϕ(x2) for all x1, x2.
ii) ϕ is convex valued: ϕ(x1) = [ϕ−(x1), ϕ

+(x1)] for all x1, single-valued
a.e., and upper-hemi-continuous (its graph is closed).
iii) ϕ− and ϕ+ are weakly decreasing and x1 ≤ x′1 =⇒ ϕ−(x1) ≥ ϕ+(x′1); ϕ
is the u.h.c. closure of both ϕ− and ϕ+.
iv) ϕ(L) contains H and ϕ(H) contains L.
v) ϕ has a unique fixed point a: a ∈ ϕ(a), and a is an end-point of ϕ(a).

Proof in the Appendix.

Theorem 2 Fix a strictly super- (resp. sub-) modular function W,
continuously differentiable in [L,H]2.
i) For any correspondence ϕ as in Lemma 9, the following equation

g(x1) =

∫ x1

a

∂1W(t, ϕ(t))dt+ una(a) (26)

defines a maximal lower guarantee g ∈ G− (resp. G+).
ii) Conversely if g is a guarantee in G− (resp. G+), its contact correspon-
dence ϕ ((25)) is as in Lemma 9 and g takes the form (26).

Proof in the Appendix.
Note that the integral expression (26) of the extremal guarantee is the

same for sub- and super-modular functions W.
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Theorem 2 shows that the sets G± are very large even if X is one-
dimensional. After choosing the benchmark type a which guarantees the
share una(a), we can pick any decreasing single-valued function ϕ from
[L, a] into [a,H] mapping L to H, then fill the (countably many) jumps
down to create the correspondence ϕ of which the graph connects (L,H) to
(a, a), and finally extend ϕ to [a,H] where its graph is the symmetric of its
graph in [L, a] around the diagonal of [L,H]2 so that ϕ also maps H to L.

To add Figure.

Example 3 Commons with substitutable inputs (continued from Propo-
sition 4)

This is the model subsection 4.3 with only two agents:W(x) = F (x1+x2)
and F is increasing and strictly concave (or strictly convex) on [L,H].

We illustrate the minimal upper (or maximal lower) guarantees defined
by (26) for simple choices of the function ϕ.

Although Proposition 4 when n = 2 delivers only the two canonical in-
cremental guarantees (Proposition 3), there are two one-dimensional families
of “two-piece-incremental” guarantees, parametrised by the fixed point a of
ϕ.

In the first family ϕ(·) ≡ H on [L, a] then ϕ(·) ≡ a on [a,H] (with
appropriate jumps down at a and H (Lemma 11). Equation (26) gives ga
in G±:

ga(x1) = F (x1 +H)− F (a+H) +
1

2
F (2a) for x ∈ [L, a]

ga(x1) = F (x1 + a)−
1

2
F (2a) for x ∈ [a,H]

In the second family ϕ equals first a on [L, a] then L on [a,H]:

ga(x1) = F (x1 + a)−
1

2
F (2a) for x ∈ [L, a]

ga(x1) = F (x1 + L)− F (a+ L) +
1

2
F (2a) for x ∈ [a,H]

A very different type of guarantee obtains from (26) and the function
ϕ(x1) = L+H − x1, of which the graph is the anti-diagonal of [L,H]2:

g∗(x1) =
1

2
F (L+H) +

dF

dx
(L+H)(x1 −

L+H

2
) for x ∈ [L,H]

This is simply the tangent at L+H
2 to the unanimity function una(x1) =

1
2F (2x1). In Example 4, subsection 7.1 we describe yet another one-dimensional
family of guarantees combining features of both the incremental-like and the
tangent guarantee above.
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7 Two open questions

7.1 a characterisation result for n ≥ 3?

The key to Theorem 2 for two agent problems is the deep understanding
of the contact correspondence {(x1, ϕ(x1));x1 ∈ X} of any extremal guar-
antee (Lemmas 10, 11 ). We could not gain a similar understanding of
this correspondence with three or more agents, where it takes the form
{(x1, ϕ1(x1), · · · , ϕn−1(x1));x1 ∈ X}.

To emulate the proof technique of Theorem 1 in an n-person problem we
now assume that each type x1 has at least one diagonal contact profile where
all ϕk(x1) coincide. This is a considerable simplification: it rules out n−2 of
the extremal guarantees we described in the commons problem (Proposition
4) and most of them for rank-separable functions (Theorem 1).

Equation (7) becomes

∀xi ∈ X ∃xj ∈ X : g(xi) + (n− 1)g(xj) = W(xi;
n−1
xj ) (27)

As in (25) the set of its solutions xj defines a correspondence xi → θ(xi)
from [L,H] into itself. It is easy to check that most properties of ϕ listed in
Lemmas 10 and 11 hold true for θ: it is convex valued, weakly decreasing
and upper-hemi-continuous, with a unique fixed point a . However, it is not
symmetric and its range can be smaller than [L,H].

Exactly like in the proof of statement ii) of Theorem 2 we see that any
extremal guarantee in the relevant Gε where the contact correspondence
contains a diagonal selection θ must take the form

g(xi) =

∫ xi

a

∂1W(t,
n−1

θ(t))dt+ una(a) (28)

The contact equation (27) is now

∫ xi

a

∂1W(t,
n−1

θ(t))dt+ (n − 1)

∫ θ(xi)

a

∂1W(t,
n−1

θ(t))dt = W(xi,
n−1

θ(xi))−W(
n
a)

(29)
but unlike in the two person case this does not automatically follow, except
for xi = a. Taking derivatives on both sides gives, after simple computations,
a functional equation in θ:

for all xi ∈ [L,H] :
dθ

dx
(xi) = 0 and/or ∂1W(θ(xi),

n−1︷ ︸︸ ︷
θ ◦ θ(xi)) = ∂2W(xi,

n−1

θ(xi))
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In addition we still need to check that g defined by (28) meets the relevant
side of inequality (4). Though hopeless in the general case, this approach
allows us to identify some new solutions of the commons problem.

Example 4 Commons with substitutable inputs (continued)
We assume as in subsection 4.3 that F strictly concave and increas-

ing. For simplicity of the equations its domain is [0,H] and F (0) = 0. In
Proposition 4 we identified n extremal guarantees of the incremental type
for this problem; below we uncover another subset {ga; a ∈ [0,H]} of G+,
parametrised by the fixed point of ga and built around the tangents sup-
porting the unanimity function.7 It is doubtful that these two very different
subsets of G+ capture the entire set G+ of this most studied version of the
commons problem.

Definition (28) and the functional equation (29) are now

g(xi) =

∫ xi

a

dF

dx
(t+ (n− 1)θ(t))dt+

1

n
F (na)

for all xi ∈ [0,H] :
dθ

dx
(xi) = 0 and/or θ ◦ θ(xi) =

n− 2

n− 1
θ(xi) +

1

n− 1
xi

(30)
The identity dθ

dx
≡ 0 gives θ(·) ≡ a and the incremental equation at a

g(xi) = F (xi + (n− 1)a) −
n− 1

n
F (na) for all xi

but g violates the inequality (4) if a ∈]0,H[, for instance at x = (a+ ε, a−

ε,
n−2
a ) because F is strictly concave.
The affine solutions of the functional equation RH of (30) take the form

θ(xi) = a+
1

n− 1
(a− xi)

which maps [0,H] into itself if and only if a ∈ [ 1
n
H, n−1

n
H]. In this case we

find the following guarantees:

g−a (xi) =
1

n
F (na) +

dF

dx
(na)(xi − a) for xi ∈ [0,H] (31)

The graph of g−a is tangent to that of the unanimity guarantee at a; and
the RH of inequality (4) follows at once from the tangent inequality of F at
na.

7Naturally if F strictly convex, increasing, and F (0) = 0, the same functions ga describe
maximal lower guarantees.
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If a ∈ [0, 1
n
H] we find a solution θ of (30) meeting the RH for xi ∈ [0, na]

and the LH for xi ∈ [na,H]. So ga(xi) is given by (31) in [0, na], and in
[na,H] by

g−a (xi) = F (xi)−
n− 1

n
F (na) + (n− 1)

dF

dx
(na)a

Similarly if a ∈ [n−1
n

H,H] then g−a (xi) is as in (31) for xi ∈ [na − (n −
1)H,H] and

g−a (xi) = F (x+(n−1)H)−
n− 1

n
F (na)−(n−1)

dF

dx
(na)(H−a) for xi ∈ [0, na−(n−1)H]

Figure X illustrates the three types of guarantees just described.

7.2 multi-dimensional types and a decentralisation question

The general results in section 3 apply to functions x → W(x) of any number
m of real variables xi. To test their power for m ≥ 2 a natural first step is
the following simple generalisation of the problem in section 2.

We must allocate a set A = {a, b, · · · } of indivisible items between agents
with utilities additive across items: efficiency requires to assign each item to
a corresponding efficient agent. Agent i’s type is xi = (xia)a∈A ∈ [L,H] ⊂
RA and the total benefit

WA(x) =
∑

a∈A

max
i∈[n]

{xia} (32)

is additively separable in the m items. This suggest that the extremal guar-
antees of WA are additively separable as well.

Proposition 5
i) The unanimity function una(xi) =

1
n

∑
a∈A xia is the largest lower guar-

antee of WA.
ii) Pick for each a a minimal upper guarantee g+pa of Wa(x) = max1≤i≤n{xia}
with parameter pa ∈ [La,Ha] (Proposition 1). Then

g+ =
∑

a∈A

g+pa

is a minimal upper guarantee of WA.
iii) For n = 2 every minimal upper guarantee of WA takes the above form
for some choice of pa ∈ [La,Ha] and pb ∈ [Lb,Hb].

31



Statement i) holds because WA is submodular. Checking statement ii)
is straightforward.

The proof of the equally intuitive statement iii) takes (much) more work,
it is done in the Appendix. A very plausible conjecture is that it holds for
any number m of items.

We can ask a more general decentralisation question. Suppose each type
has two components xi = (x1i , x

2
i ) ∈ X 1 × X 2 = X that the function W

separates:
W(x) = W1(x

1) +W2(x
2) for all x ∈ X

Statement ii) in Proposition 5 still holds, and so does statement i) (or
its dual) if W is sub- (or super-) modular.

We conjecture that the converse separability property iii) applies to more
families of component functions than W(x) = maxi∈[n]{xi}, for instance to
the rank separable ones. We have not been able to prove or find a counter
example of this property for general modular functions W.

8 Two take-home points

1) Given the evaluation of the benefits or costs of resources held in the
common property regime, choosing a pair of extremal guarantees (one lower,
one upper) is an endogenous and story-free way to interpret individual rights.
It severely restricts the range of feasible allocations in ways which, in many
simple examples, have clear normative meaning.

2) For sub- or super-modular functionsW a typical choice above is on one
side an infinite set (perhaps of infinite dimension), and the single unanimity
guarantee on the other. The prominent role of the latter in the modular
class confirms its importance in other contexts such as the division of private
commodities or the exploitation of a common production function.
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9 Appendix: missing proofs

9.1 Theorem 1

We fix W given by (20) and assume that it is submodular, so that dwk

dx
(·)

decreases weakly with k.
Statement i). We must show that gc defined by (23) is in G+. Because

gc(xi) andW(xi; c) are continuous in xi, c it is enough to prove the feasibility
inequality (4) for strictly decreasing sequences {xℓ}

n
1 and {ck}

n−1
1 such that

H > c1 and cn−1 > L and moreover xℓ 6= ck for all ℓ, k.
Step 1 Call the profile of types x∗ regular if

x∗1 > c1 > x∗2 > c2 > · · · > ck−1 > x∗k > ck > · · · > cn−1 > x∗n (33)

then compute

n∑

1

gc(x
∗
k) =

n∑

1

W(x∗k, c)−

n−1∑

1

W(ck, c) =

n−1∑

1

(wk(x
∗
k)−wk(ck))+W(x∗n, c) = W(x∗)

so that x∗ is a contact profile of gc.
Step 2 For any two (strictly decreasing) n-sequences x, x′ we say that

x′ is reached from x by an elementary jump up above ck if x−k = x′−k; ck
is adjacent to some xℓ in the ordered sequence combining the xi-s and cj-s;
xℓ < ck < x′ℓ and ck and x′ℓ are still adjacent after the jump. The definition
of an elementary jump down below ck is exactly symmetrical.

In this step we claim that for any x̃ we can find a regular profile x∗ and
a sequence σ = {x∗ = x1, · · · , xt, · · · , xT = x̃} such that

1) each step from xt to xt+1 is an elementary jump up or down over some
ck
2) ℓ ≥ k + 1 if xℓ jumps up above ck, and ℓ ≤ k if it jumps down below ck.

We omit the straightforward proof of the claim.
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Step 3 We pick an arbitrary (strict) profile x̃ and a corresponding se-
quence σ from some x∗ to x̃ as in Step 2, then we check that in each step of
the sequence the sum

∑n
1 gc(xℓ)−W(x) cannot decrease, which will conclude

the proof that gc ∈ G+. This sum is

B︷ ︸︸ ︷

(

n∑

ℓ=1

W(xℓ, c))−

C︷ ︸︸ ︷
W(x)−

D︷ ︸︸ ︷
n−1∑

k=1

W(ck, c)

In the jump up xℓ < ck < x′ℓ the net changes are

∆B = wk(x
′
ℓ)−wk+1(xℓ)+wk+1(ck)−wk(ck) ; ∆C = wℓ(x

′
ℓ)−wℓ(xℓ) ; ∆D = 0

With the notation ∆f(a → b) = f(b)−f(a) and some rearranging this gives

∆B −∆C +∆D = ∆(wk − wℓ)(ck → x′ℓ) + ∆(wk+1 − wℓ)(xℓ → ck)

where both final terms are non negative because ℓ ≥ k+1 and the opposite
of inequality (21) means that wk − wℓ and wk+1 − wℓ increase weakly.

The proof for a jump down step is quite similar by computing the varia-
tion of

∑n
1 gc(xℓ)−W(x) to be ∆(wℓ−wk)(ck → xℓ)+∆(wℓ−wk+1)(x

′
ℓ → ck).

We have shown that gc is an upper guarantee of W (even when the
sequence c is not strict).

Step 4 Pick now an arbitrary weakly decreasing sequence c1 ≥ c2 ≥ · · · ≥
cn−1 and xi ∈ [L,H] located in the sequence as ck ≥ xi ≥ ck+1 for some
k ∈ [n]∪{0} with the convention c0 = H, cn = L. It is then straightforward
to check that (xi; c) is a contact point of gc.

Statement ii) We fix g a minimal upper guarantee of W and recall the
notation C(g) for the set of contact profiles of g (Lemma 4). For each k ∈ [n]
its projection Ck(g) is the set of those xi ∈ [L,H] appearing in some profile
x ∈ C(g) with the rank k; it is closed because C(g) is closed and we call its
lower bound ck. The sequence {ck} decreases weakly because in a contact
profile where ck is k-th the type xk+1 ranked k+1 is weakly below ck. And
cn = L because cn is in some contact profile of g.

Check first that C1(g) = [c1,H] with the help of Lemma 7. For each x1 ∈
[c1,H[ where g is differentiable and x1 appears with rank k in some contact
profile we have dg

dx
(x1) = dwk

dx
(x1) ≤ dw1

dx
(x1) because W is submodular

(Lemma 9). This implies g(x1) ≤ g(c1) + w1(x1) − w1(c1) everywhere in
[c1,H].
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Pick a profile (c1, x−1) ∈ C(g) where c1 is ranked first and combine the
latter inequality with this contact equation:

g(c1)− w1(c1) =

n∑

2

(wk(xk)− g(xk)) ≥ g(x1)− w1(x1)

The inequality above must be an equality because g is an upper guarantee
therefore dg

dx
(x1) =

dw1
dx

(x1) a.e. in [c1,H] and [c1,H] = C1(g).
We repeat this argument for x2 ∈ [c2, c1[. In any of its contact profiles its

rank is at least 2 by definition of c1, so when g is differentiable at x2 we have
dg
dx
(x2) =

dwk

dx
(x2) ≤

dw2
dx

(x2) by submodularity of W. Then g(x2) ≤ g(c2) +
w2(x2)−w2(c2) holds in [c2, c1] and by plugging as above this inequality at
a contact profile where c2 is ranked second, we see that it is an equality and
conclude that first, dg

dx
(x2) = dw2

dx
(x2) a.e. in [c2, c1] and second, [c2, c1] ⊆

C2(g).
8

The clear induction argument gives dg
dx
(xk) =

dwk

dx
(xk) a.e. in [ck, ck−1];

together with the continuity of g it implies that g is entirely determined by
the value g(L). But for c = (c1, · · · , cn−1) the minimal upper guarantee gc
defined by (23) (and discussed in the proof of statement i)) meets precisely
the same differential system therefore g and gc differ by a constant; if they
don’t coincide g is either not an upper guarantee or not minimal. �

9.2 Example 2.C

We can without loss assume that F is the identity because the change of
variable yi = F (xi) reaches precisely that problem (exactly like in Example
1.A).

The proof resembles that of Proposition 1. Fix a minimal upper guar-
antee g+ ∈ G+

k and recall that g+ is weakly increasing (Lemma 3). Define
p = ng+(L): from una(xi) =

1
n
xi and inequality (6) after Lemma 1 we get

p ≥ L. Observe next that gH(xi) ≡
1
n
H is in G+

k (in fact also in G+
k as we

show below); if p > H then g+ is everywhere larger than gH , a contradiction.
So p ∈ [L,H].

Apply now the feasibility inequality (4) to g+ at the profile (
n−k

L ,
k
xi):

n− k

n
p+ kg+(xi) ≥ xi for xi ∈ [L,H]

8Note that C2(g) can extend beyond c1 but this can only happen if dw2

dx
= dw1

dx
in the

overlap interval. To see this compare two contact profiles x and y such that x1 ≥ x2 >

y1 ≥ y2 and use the upper bound property at the two profiles where x2 and y2 have been
swapped plus submodularity of W to deduce that they are contact profiles as well.
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If k = n this gives g+(xi) ≥ una(xi): as una ∈ g+ we conclude g+ = una.
For k ≤ n−1 we combine the inequality above with g+(xi) ≥

1
n
p and obtain

g+(xi) ≥ max{
1

n
p,

1

k
(xi −

n− k

n
p)} =

1

n
p+

1

k
(xi − p)+

It remains to check that the function on the right, which we write g+p , is

itself an upper guarantee. Pick an arbitrary profile x ∈ [L,H][n] and suppose
that p is s. t. xℓ ≥ p ≥ xℓ+1. We must show

n∑

i=1

g+p (xi) = p+
1

k
((

ℓ∑

t=1

xt)− ℓp) ≥ xk

If p ≥ xk we are done because the term in parenthesis is non negative.
Assume now p < xk so that xk ≥ · · · ≥ xℓ ≥ p ≥ xℓ+1, then note that
(
∑ℓ

t=1 x
t)− ℓp ≥ k(xk − p) and we are done.

The proof that for k ≥ 2 the set G−
k is also parametrised by q ∈ [L,H]

as

g−p (xi) ≥
1

n
q +

1

n− k + 1
(xi − q)−

and for k = 1 contains only una, is entirely similar. �

9.3 Lemma 11

Statement i) is clear because W is symmetric. In Statement ii) upper-hemi-
continuity of ϕ is clear because W and g are both continous (Lemma 5).

To check that ϕ is convex valued we fix (x1, x2), (x1, x
′
2) ∈ Γ(ϕ) and z

s. t. x2 < z < x′2, and check that Γ(ϕ) contains (x1, z) too. Pick some
w ∈ ϕ(z): if w > x1 we see that Γ(ϕ) contains (x1, x2) and (w, z) s.t.
(x1, x2) ≪ (w, z) which is a contradiction by Lemma 10. If w < x1 we use
instead (w, z) and (x1, x

′
2) to reach a similar contradiction, and we conclude

w = x1.
The proof below that ϕ is single-valued a. e. will complete that of

statement ii).

Statement iii) If x1 < x′1 in X and ϕ−(x1) < ϕ+(x′1) we again contradict
the strict supermodularity of W (Lemma 10) . So x1 < x′1 =⇒ ϕ−(x1) ≥
ϕ+(x′1) and ϕ− and ϕ+ are weakly decreasing.

If ϕ(x1) is not a singleton, ϕ+(x1) > ϕ−(x1), then ϕ+ jumps down at
x1; a weakly decreasing function can only do this a countable number of
times. That the u.h.c. closure of ϕ+ contains [ϕ−(x1), ϕ

+(x1)] follows from
ϕ−(x1) ≥ ϕ+(x1 + δ) for any δ > 0.
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Statement iv) If ϕ(L) does not contain H we pick some x1 in ϕ(H): by
statement i) ϕ(x1) contains H therefore x1 > L; we reach a contradiction
again from Lemma 10 because Γ(ϕ) contains (L,ϕ+(L)) and the strictly
larger (x1,H).

Statement v) Kakutani’s theorem implies that at least one fixed point
exists. If Γ(ϕ) contains both (a, a) and (b, b) we contradicts again Lemma 10.
Check finally that the inequalities ϕ−(a) < a < ϕ+(a) are not compatible.
Pick δ > 0 s.t. ϕ(a) contains a− δ and a+ δ: then Γ(ϕ) contains (a, a+ δ)
and (a− δ, a) (by symmetry) and we invoke Lemma 10 again. �

9.4 Theorem 2

Step 0: the integral in (26) is well defined.
For any correspondence ϕ as in Lemma 11 the integral

∫ x1

a
∂1W(t, ϕ(t))dt

is the value of
∫ x1

a
∂1W(t, f(t))dt for any single-valued selection f of ϕ: this is

independent of the choice of f because ϕ is multi-valued only at a countable
number of points and every single-valued selection of ϕ(x1) is a measurable
function.

Statement ii) Fix g ∈ G− and its contact correspondence ϕ. The function
W is uniformly Lipschitz in [L,H]2 so by Lemma 7 g is Lipschitz as well,
hence differentiable a. e.. The derivative dg

dx
is given by property (10) in the

Corollary to Lemma 7:

dg

dx
(x1) = ∂1W(x1, x2) for any x2 ∈ ϕ(x1)

therefore we can write the RH as ∂1W(x1, ϕ(x1)) without specifying a par-
ticular selection of ϕ(x1).

Note that g(a) = una(a) because (a, a) ∈ Γ(ϕ). Now integrating the
differential equation above with this initial condition at a gives the desired
representation (26).

Statement i)
Step 1 Lemma 11 implies that Γ(ϕ) is a one-dimensional line connecting
(L,H) and (H,L) that we can parametrise by a smooth mapping s →
(ξ1(s), ξ2(s)) from [0, 1] into [L,H]2 s.t. ξ1(·) increases weakly from L to H

and ξ2(·) decreases weakly from H to L. We can also choose this mapping
so that ξ1(

1
2 ) = ξ2(

1
2) = a, the fixed point of ϕ.9

9If a is 0,or 1 we check that (26) defines the two canonical stand alone guarantees in
Proposition 3.
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We fix an arbitrary selection γ of ϕ, an arbitrary x1 in [L,H], and check
the identity

∫ x1

a

∂1W(t, ϕ(t))dt+

∫ γ(x1)

a

∂1W(t, ϕ(t))dt = W(x1, γ(x1))−W(a, a) (34)

We change the variable t to s by t = ξ1(s) in the former and by t = ξ2(s)
in the latter. Next s is the parameter at which (ξ1(s), ξ2(s)) = (x1, γ(x1))
and we rewrite the LH above as

∫ s

1
2

∂1W(ξ1(s), ξ2(s))
∂ξ1
∂s

(s)ds+

∫ s

1
2

∂1W(ξ2(s), ξ1(s))
∂ξ2
∂s

(s)ds

where in each term ∂1W(t, ϕ(t)) we can select a proper selection of the
(possible) interval because (ξ1(s), ξ2(s)) ∈ Γ(ϕ). As W(x1, x2) is symmetric

in x1, x2, we can replace the second integral by
∫ s

1
2
∂2W(ξ1(s), ξ2(s))

∂ξ2
∂s

(s)ds

and conclude that the sum is precisely

W(ξ1(s), ξ2(s))−W(ξ1(
1

2
), ξ2(

1

2
)) = W(x1, γ(x1))−W(a, a)

Step 2 We show that (26) defines a bona fide guarantee g: g(x1) + g(x2) ≤
W(x1, x2) for all x1, x2 ∈ [L,H].

The identity (34) amounts to g(x1)+ g(γ(x1)) = W(x1, γ(x1)) for all x1.
If we prove that g ∈ G

− this will imply it is maximal. Compute

g(x1)+g(x2) = W(x1, γ(x1))+g(x2)−g(γ(x1)) = W(x1, γ(x1))+

∫ x2

γ(x1)
∂1W(t, ϕ(t))dt

We are left to show
∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤ W(x1, x2)−W(x1, γ(x1)) (35)

We assume without loss x1 ≤ x2 and distinguish several cases by the
relative positions of a and x1, x2 .

Case 1: a ≤ x1 ≤ x2, so that γ(x1) ≤ a. For every t ≥ γ(x1) property
iii) in Lemma 11 implies ϕ+(t) ≤ ϕ−(γ(x1)) and ϕ(γ(x1)) contains x1:
therefore submodularity of W implies ∂1W(t, ϕ(t)) ≤ ∂1W(t, x1) and
∫ x2

γ(x1)
∂1W(t, ϕ(t))dt ≤

∫ x2

γ(x1)
∂1W(t, x1)dt = W(x2, x1)−W(γ(x1), x1)

Case 2: x1 ≤ a ≤ γ(x1) ≤ x2. Similarly for t ≥ γ(x1) we have ϕ+(t) ≤
ϕ−(γ(x1)) and conclude as in Case 1.
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Case 3: x1 ≤ x2 ≤ a, so that γ(x1) ≥ a. For all t ≤ γ(x1) we have
ϕ−(t) ≥ ϕ+(γ(x1)) and ϕ(γ(x1)) contains x1: now submodularity of W
gives ∂1W(t, z) ≥ ∂1W(t, x2) for z between x2 and γ(x1) and the desired
inequality because the integral in (35) goes from high to low.

Case 4: x1 ≤ a ≤ x2 ≤ γ(x1). Same argument as in Case 3. �

9.5 Statement iii) in Proposition 5

We set A = {a, b} soX = [La,Ha]× [Lb,Hb] and fix g ∈ G+ throughout.
Step 1. The function WA isuniformly 1-Lipschitz for the ℓ∞ norm and so is
g (Lemma 7). As discussed just after the proof of the latter, we know that
along any coordinate xia both g and WA are a.e. differentiable; both are
also weakly increasing (Lemma 3). Fix x1 ∈ [L,H] s. t. x1a ∈]La,Ha[ and
a corresponding contact profile (x1, x̃−1) of g. If x1a → WA((x1a, x1b), x̃−1)
has a kink at x1a its left derivative is 0 and its right one is 1: then the
inequalities (9) imply that g is not differentiable in x1a at x1. So when
g is differentiable in x1a at x1, which is true a. e. in x1a, so is WA and
∂g

∂x1a
(x1) =

∂WA

∂x1a
(x1, x̃−1) is 0 or 1.

If ∂g
∂x1a

(x1a, x1b) = 0 we claim that the same is true for any smaller
x′1a ∈]La, x1a[. When we lower x1a in the contact equality (7)

g(x1a, x1b) +

n∑

j=2

g(x̃j) = WA((x1a, x1b), x̃−1)

the RH does not change while the LH does not increase (Lemma 3);
but if the LH decreases we reach a contradiction of the upper guarantee
inequality (4): therefore g(·, x1b) is flat as claimed.

If instead ∂g
∂x1a

(x1a, x1b) = 1 and we increase x1a to x′1a ∈]x1a,Ha[ in
the contact equality, the RH term increases at speed 1 while the LH term
increases with speed at most 1; but the LH term cannot fall below the RH
one because g is an upper guarantee, so we see that g increases at speed
1 in ]x1a,Ha[. Because the two subsets of ]La,Ha[ just described cover all
but a subset of measure zero and g is continuous (Lemma 4), we conclude
that there is a critical value τ ∈ [La,Ha] and a number π = g(La, x1b), both
depending on x1b such that

g(x1a, x1b) = (x1a − τ)+ + π for x1a ∈ [La,Ha] (36)

Step 2. We note that a contact profile of g has one agent (Ha,Hb) and
n− 1 others with type (La, Lb). This is because in any contact equation (7)
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containing (Ha,Hb):

g(Ha,Hb) +

n∑

j=2

g(xj) = Ha +Hb

If we lower each xj to (La, Lb) the RH does not change while the LH
sum must stay flat (same argument as in Step 1). Setting µ = g(La, Lb) we
conclude

g(Ha,Hb) = Ha +Hb − (n− 1)µ (37)

Step 3 We apply equation (36) successively to x1b = Lb and x1a = La: this
produces two numbers α, β s. t. for all x1 ∈ [L,H]

g(x1a, Lb) = (x1a − α)+ + µ and g(La, x1b) = (x1b − β)+ + µ (38)

where (α, β) ∈ [L,H].
Suppose that g(α, zb) = µ for some zb > β: it implies g(La, zb) = µ but

the RH equation in (38) says g(La, zb) = µ + (zb − β), contradicting the
definition of β. So equation (36) for x1a = α uses some β∗ ≤ β:

g(α, x1b) = (x1b − β∗)+ + µ for x1b ∈ [Lb,Hb]

(recall g(α,Lb) = µ). Similarly there is some α∗ ≤ α such that

g(x1a, β) = (x1a − α∗)+ + µ for x1a ∈ [La,Ha]

The two last equations imply

g(α, β)− µ = β − β∗ = α− α∗ = δ ≥ 0 (39)

Step 4 We assume δ > 0 and derive a contradiction.
In the rectangle10 [(α, β∗), (Ha, β)] we know from step 3 that ∂g

∂x1b
≡ 1

from (α, β∗) to (α, β) and ∂g
∂x1a

≡ 1 from (α, β) to (Ha, β). On the alternative
path (α, β∗) to (Ha, β

∗) then to (Ha, β), the corresponding derivatives are
at most 1 therefore they are 1 everywhere. So the derivative of g is 1 on the
edges of [(α, β), (Ha, β)] and [(α, β), (α,Hb)].

Apply now step 1 to x1a = Ha: g(Ha, ·) takes the form (36) on [Lb,Hb].
We just showed that ∂g

∂x1b
(Ha, ·) ≡ 1 in the non trivial interval [β∗, β] there-

fore it is still 1 in [(Ha, β),H]. Now we see that the derivative of g is 1 on

10If α = La or Ha this is an interval but this does not affect the argument to show that
δ must be zero.
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the four edges of the rectangle [(α, β),H]. A similar argument shows that it
is 1 as well on any horizontal or vertical interval splitting [(α, β),H] in two.

From ∂g
∂x1a

≡ ∂g
∂x1b

≡ 1 in [(α, β),H] we get

g(H) − g(α, β) = Ha +Hb − (α+ β)

which, combined with equations (37) and (39), gives α+β = nµ+δ. However
if we apply the upper guarantee inequality (4) to the profiles (α, β∗), (α∗, β)
and n− 2 copies of (La, Lb) we have

nµ = g(α, β∗) + g(α∗, β) + (n− 2)µ ≥ α+ β

and we conclude α+ β = nµ and δ = 0, the desired contradiction.
We have shown: α = α∗, β = β∗, α+β = nµ, and g(α, β) = µ (by (39)).

Step 5 We now compute ∂g
∂x1a

, ∂g
∂x1b

everywhere in [L,H] to conclude the
proof. We just showed that both derivatives equal 1 in [(α, β),H]; they
are both 0 in [L, (α, β)] because g(α, β) = µ. In the remaining rectangle
[(α,Lb), [(Ha, β)] we have ∂g

∂x1a
≡ 1 on the two edges parallel to the xa-

axis, and ∂g
∂x1b

≡ 0 on the edge [(α,Lb), (α, β)]. So g is constant between
(Ha, Lb) and (Ha, β), and also between any (xa, Lb) and (xa, β) by the usual
integration argument. So ∂g

∂x1a
≡ 1, ∂g

∂x1b
= 0 holds in the entire rectangle.

The symmetric property holds in the rectangle [(La, β), [(α,Hb)].
The function g is now entirely determined by the choice of (α, β) in [L,H]

because g(L) = µ = 1
n
(α+ β). Its closed form expression is

for all x1 ∈ [L,H] : g(x1) = (x1a − α)+ + (x1b − β)+ + µ =

= (x1a − α)+ +
1

n
α+ (x1b − β)+ +

1

n
β = g+α (x1a) + g+β (x1b)+

�
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