

Submitting and monitoring batch jobs using Torque
& Maui

Mark Meenan

University of Glasgow, IT Services

For help email IT-HPC-Support@glasgow.ac.uk Ver 3.3.2

Getting Started

Resources available

Overview of the batch process

Useful commands in Torque & Maui

• qsub
• qstat
• showq
• tracejob
• qdel
• pbsnodes
• showstart
• checkjob
• canceljob
• pbstop

Advanced Torque commands

• qsub advanced part 1 – job arrays
• qstat advanced
• tracejob advanced
• qdel advanced
• qsub advanced part 2 – interjob dependencies and file staging

MPI

• pbsdsh
• mpirun

Using GPU’s

Gotcha’s & what to do about them

Getting Started

Web Pages

The first thing you should do is look at the IT High Performance Compute Clusters web page
for general information about the cluster. You will find a link to a basic user guide and
registration form.

Preparing your account for use

Once you get an account you will be asked to set a password. Then you should do a few
tasks to set up your account for use.

You need to set up ssh as explained below, the reason for this is to allow inter-process
communication on the cluster and it also is needed by TORQUE to copy the error and output
files from the compute node to the headnode at the end of the job.

Please run this configuration once you are logged into the system
You need to create an ssh key to allow the cluster to pass files back and forth
Run the command to generate your key:

• ssh-keygen -t rsa
When prompted to enter a password just press return, to work with PBS/Torque it needs to
be a passwordless ssh - this will create a number of files in ~/.ssh/.
Then you need to run

• cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
There is sometimes problems created by the permissions on this authorized_keys file. So
check the permissions on ~/.ssh/authorized_keys by running the command:

• ls -l ~/.ssh/
It should show the line (where -rw------- is the important part):

• -rw------- (some other fields) authorized_keys
If it does not run the following command:

• chmod 600 ~/.ssh/authorized_keys

I think it is also worth setting up mail forwarding (explained below). This means that any
emails from the system will be forwarded to an account(s) you specify.

Mail Forwarding Configuration

It is recommended that you create a .forward file to forward mail to your email address - by
default Torque sends mail to you when a job starts & finishes. eg.
touch ~/.forward
echo user@udcf.gla.ac.uk > ~/.forward
cat ~/.forward to check
Permissions are again important check that the permissions are -rw-r--r-- if not run the
command
chmod 644 ~/.forward

There are also links to basic instructions on how to use Torque/PBS
and running MPI jobs.

https://www.gla.ac.uk/myglasgow/it/hpcc/ithpcc/
https://www.gla.ac.uk/myglasgow/it/hpcc/userguide/howtousetorquepbs/
https://www.gla.ac.uk/myglasgow/it/hpcc/userguide/howtorunmpijobs/

Resources available to a job

Headline Specification
• 1020 cores

• 7 GeForce GTX 1080 GPUs

• Up to 16GB RAM per core

The hardware is a mix of:
 7 Dell PowerEdge 6145 with Quad 16 core AMD Opteron 6376 and 512GB RAM per node

 2 Avanti SYS-2028GR-TE each with 4 GeForce GTX 1080 GPUs

 2 Dell R440 with Dual 24 Thread Xeon 4116 and 384GB RAM per node

 1 Dell R930 with Quad 24 Thread Xeon 4830 and 1.5TB RAM

 1 Dell R840 with Quad 40 Thread Xeon 6138 and 256GB RAM

 1 Dell R750 with Dual 16 Core Xeon Gold 6346 and 768GB RAM

The Avanti’s, Dell R440’s, Dell R930 and R840 have been purchased by research groups/projects and so have
additional restrictions on access.

There are a number of resources available to your job, as part of the job submission
process a temporary directory is created in /tmp using the $PBS_JOBID variable.
You can refer to it in your scripts by using the path /tmp/$PBS_JOBID – this gives
you some local disk space to use. This area is deleted when your job finishes.

There is your home area $HOME or ~ which is exported to all the compute nodes
and there is /export/scratch/username again exported to all the compute nodes Some
research groups have additional space under /export/projects/.

In addition there are the normal tools and libraries available on linux.

Overview of the batch process

You submit a job to the cluster using qsub. The Maui and torque programs will then decide if
your job can be run now or if it is to be queued. When the job is run it will be allocated one or
more processors on one or more nodes, depending on the resources you have requested.

As your job starts a temporary folder is created on the execution nodes assigned to you at
/tmp/$PBS_JOBID (where $PBS_JOBID is an environment variable you can reference in your
code) . Your job will then run to completion, or until one of the resource limits is reached
(typically cput or walltime).

As your job exits the temporary folder is deleted along with all its contents (ie it is up to your
job to save its contents back to somewhere accessible). The clean up process will also kill
any remaining processes belonging to you on the execution nodes. Two files are then copied
back to your home area (in actual fact the directory from which you launched qsub). These
files are in the format jobname.ojobid and jobname.ejobid. (eg STDIN.o17469 and
STDIN.e17469) o is for output and e is for error

The output file will have something like

Prologue Args:
Job ID: 17469.headnode01.cent.gla.ac.uk
User ID: mjm4y
Group ID: mjm4y
MAchine: comp01

Epilogue Args:
Job ID: 17469.headnode01.cent.gla.ac.uk
User ID: mjm4y
Group ID: mjm4y
Job Name: script_name
Session ID: 18380
Resource List: neednodes=6:ppn=2,nodes=6:ppn=2,walltime=60:00:00
Resources Used: cput=00:00:00,mem=3676kb,vmem=114680kb,walltime=00:19:32
Queue Name: parallel
Account String:
Process's killed on comp01
tmp directory removed on comp01
Process's killed on comp02
tmp directory removed on comp02
Process's killed on comp05
tmp directory removed on comp05
Process's killed on comp06
tmp directory removed on comp06
Process's killed on comp07
tmp directory removed on comp07
Process's killed on comp08
tmp directory removed on comp08

The error file should contain any errors that your code produced. It is expected your job will
write its output to somewhere you specify. Your home area $HOME and a scratch directory
/export/scratch/username are provided through NFS to all the execution nodes. You may also
have further space allocated in the /export/project directory to your research group.

Useful Commands in PBS/TORQUE & Maui

qsub

/usr/local/bin/qsub

This is the main job wrapper in PBS/Torque and you will use this to submit all your jobs, it is
worth spending some time looking at the man pages from Adaptive Computing. We will
discuss here the most used options -I, -l, -m, -M, -N.

When you use qsub you can pass options in 2 ways – on the command line and within your
job script, where appropriate we will use both methods in the examples below.

Queue structure

Before going any further it is important to understand the queue structure and default
behaviour. This will then allow you to predict the resource allocation given to your job.

There are currently 10 queues – when you first submit your job it goes into feed which is a
routing queue. The feed queue then allocates the job to one of the other queue's based on
the resources asked for. The other 5 main queues are called short, long, verylong, parallel,
and veryparrallel. In addition there are 3 bioinf-stud queues and a gpu queue. Allocation to
a main queue is on the basis of expected cputime (cput) or wall clock time (walltime) and the
number of processors you request. (The bioinf-stud and gpu queues have additional
restrictions based on group membership, they are included here for completeness but you
can ignore it for now).

The queue your job is allocated to is determined by checking the resources you request
against the queues in order (short, long, verylong, parallel, veryparrallel and bioinf-stud).
You job will be run on the first queue that matches your request.

NOTE: the bioinf-stud2 & bioinf-stud3 queues are currently disabled – they are enabled over
the summer to facilitate student projects on the Bioinformatics Masters Course.

Queue Name Max CPU Time Max Walltime Min-Max
Number of
Processors

Max jobs
allowed in
queue per user

Short 10 hours 2 hours 1-16 procs 175
Long 500 hours 50 hours 1-16 procs 50
Verylong - - 1-16 procs 35
Parallel - - 17-32 procs 10
Veryparrallel - - 17-128 procs 2
Bioinf-stud - - 1-4 procs 5
Bioinf-stud2 - - 5-16 procs 3
Bioinf-stud3 - - 17-32 procs 1
GPU - 192 hours 1-4 GPUs 25
biobank - - 1-open procs 25
bioinf-verylong - - 1-40 procs 25
bioinf-parallel - - 17-40 procs -

If you reach the limit for the number of jobs allowed in the queue your job will remain in feed
until space becomes available.

The queues also have some defaults – which are applied if that resource is not specified
when submitting a job.

https://docs.adaptivecomputing.com/torque/4-0-2/help.htm#topics/commands/qsub.htm

Queue Name Default CPU

Time
Default
Walltime

Default
processors

Max running
jobs per user

Short 1 hour 1 hour 1 proc 175
Long 24 hours 24 hours 1 proc 16
Verylong 288 hours 288 hours 1 proc 12
Parallel - 288 hours 17 procs 4
Veryparrallel - 288 hours 33 procs 1
Bioinf-stud 1 hour 1 hour 1 proc 5
Bioinf-stud2 1 hour 1 hour 5 procs 3
Bioinf-stud3 1 hour 1 hour 17 procs 1
GPU - 24 hours 1 GPU 2
biobank 288 hours 288 hours 1 proc 25
bioinf-verylong 288 hours 288 hours 1 proc 10
bioinf-parallel - 288 hours 17 proc -

Finally, due to job housekeeping scripts, you are only allowed to have one running job on
a physical node at any one time.

Here are some examples to help explain what will happen when you submit a job:-

You submit a job with no request for resources. It will enter the feed queue where it will be
routed to the short queue. The short queue will then apply its defaults of cput = 1 hour,
walltime = 1 hour and processors =1. The job will then be allocated to a node and run until
either the job finishes, OR it reaches 1 hour of cpu time OR it reaches 1 hour of real time.

You submit a job with a request for 2 hours walltime. It will enter the feed queue where it will
be routed to the short queue. The short queue will then apply its defaults of cput = 1 hour and
processors =1. The job will retain its requested 2 hours walltime. The job will then run until
either the job finishes OR it reaches 1 hour of cpu time OR 2 hours of real time.

You submit a job with a request for 3 hours cput. It will enter the feed queue where it will be
routed to the long queue. The long queue will then apply its defaults of walltime = 24 hours
and processors =1. The job will retain its requested 3 hours cput. The job will then run until
either the job finishes OR it reaches 3 hours of cpu time OR 24 hours of real time.

You submit a job with a request for 3 hours cput and 200 hours walltime. It will enter the feed
queue where it will be routed to the verylong queue. The verylong queue will then apply its
default of processors =1. The job will retain its requested 3 hours cput and 200 hours
walltime. The job will then run until either the job finishes OR it reaches 3 hours of cpu time
OR 200 hours of real time.

You submit a job with a request for 17 processors and 1 hour cput. It will enter the feed queue
where it will be routed to the parallel queue (because you have requested 17 processors) the
default walltime will be set to 288 hours so the job will run with an allocation of 17 processors.
The job will run until it finishes OR reaches 1 hour cpu time or 288 hours of walltime.

Qsub options

-I

The first option qsub –I will open an interactive shell running on one of the compute nodes –
this is most useful if you want to test something or want to compile some piece of software.
When you use this you should also consider what resources you need and pass them with the
–l option, otherwise your job will go into the short queue and have the associated defaults
applied. This shell behaves exactly as any other shell and can be used as such – if you
requested multiple nodes then it will run on the first node in the list (the one with the lowest
number) and by default all your jobs will run on this node but you can access the other
processors as long as your software is aware of mpi more on this in the mpi section later)

Some examples

qsub –I

This will open an interactive shell on 1 node with the default resource allocation of the short
queue

qsub –I –l cput=01:30:00,walltime=02:00:00,nodes=2:ppn=2

This will open an interactive shell on a node and allocate it the resources of 1hr 30 minutes
cputime, 2 hours walltime and 2 nodes each with 2 processors. Using qsub –I in a script
makes no real sense

-l

The –l option is to allow you to request specific resources from the cluster that override the
defaults. A full list of the options you can request are detailed from Adaptive Computing.
The most common resources requested are cput, walltime and nodes. We will describe them
in turn.

cput is the amount of processor time you would like to request as opposed to walltime which
is the actual clock time your job will take. Nodes is the number of processors you need, there
are a number of ways of describing this, lets say that you need 8 processors – you can say
nodes=8 this will return you 8 processors on between 1 and 8 physical compute nodes– now
you probably want to run your job on one physical machine so you can say instead
nodes=1:ppn=8 – this says you need 1 node with 8 processors free, this will give you access
to 8 processors on one physical node. So some examples:-

 qsub –l cput=01:30:00, walltime=02:00:00 script.sh

your job script.sh is submitted to the cluster and allocated to one node with a cputime of 1:30
hours and walltime of 2 hours

qsub –l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2 script.sh

as before but your job is allocated two processors on a particular node.

Now to put these options in a script you would do the following

 Run qsub script.sh

The script script.sh would start with the qsub options

https://docs.adaptivecomputing.com/torque/4-0-2/help.htm#topics/2-jobs/requestingRes.htm

#!/bin/sh
#PBS -l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2
/path/to/programme_to_run

You can also set any environment variables you need within the script.

There are additional node labels we have set in our cluster to allow you to select particular
nodes:- one set for RAM giving the number of GB of ram per processing core

twogpc eightgpc sixteengpc

and another for the OS

centos7 oracle9

these can be requested by adding them to the nodes section of the command line or script
ie:-

-l nodes=1:ppn=2:eightgpc

Which will allocate 2 processors on one of the nodes with 8 GB of RAM per processor.

-M & -m

The next two options –m and –M are to do with mailing job status reports –m asks for an
email to be sent to the user that submits the job you give in one or more of three options,
those options are b to be mailed when a job begins execution, e to be mailed when a job
completes execution and a to be mailed if a job is aborted. The –M option is to allow you to
override the default email address that the programme sends to. (Assume jobs have been
submitted by mjm4y)

qsub –l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2 –m e script.sh

In this case you will be emailed to your user account on the cluster when the job finishes. The
email will go to the user who submitted the job – ie mjm4y@headnode01.cent.gla.ac.uk

qsub –l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2 –m be script.sh

In this case you will be mailed when the job starts as well

qsub –l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2 –m abe script.sh

In this case you will also get a mail if the job is aborted.

qsub –l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2 –m abe -M mjm4y@udcf.gla.ac.uk script.sh

In this final case, note that the email will be sent to mjm4y@udcf.gla.ac.uk rather than the
default mjm4y@headnode01.cent.gla.ac.uk.

To put these options in a script we would amend the script above to the following

#!/bin/sh
#PBS -l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2
#PBS –m abe
#PBS –M mjm4y@udcf.gla.ac.uk
/path/to/programme_to_run

-N

The final option I want to discuss briefly is –N this will give your job a name, which will then be
used by PBS

qsub –l cput=01:30:00, walltime=02:00:00 –N my_job script.sh

You job will be submitted to the cluster and will be referred to by the name my_job in the qstat
output and the output and error files.

This can be put in a script as before

#!/bin/sh
#PBS -l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2
#PBS –N my_job
/path/to/programme_to_run

Jobs will by default run in the directory from which it is launched. It is best therefore to give full
paths to all executables and files within your job script rather than use relative paths.

There are a number of other options you may wish to look at (see the man page from
Adaptive Computing) for example –o and –e allows you to redirect output (by default the
output and error files will be written to the directory you launch qsub from).

https://docs.adaptivecomputing.com/torque/4-0-2/help.htm#topics/commands/qsub.htm

Useful Commands in PBS/TORQUE & Maui

qstat

/usr/local/bin/qstat

This gives the status of the work queue.

There are a number of possible options you can pass to this command which determines
what the output is.

qstat on its own gives the output below – Time Use is cput used to date. S is the status of the
job where Q is queued, R is running, E is exiting and C is completed.

[root@headnode04 export]# qstat
Job ID Name User Time Use S Queue
------------------------- ---------------- --------------- -------- - -----
245017.headnode03 SUB10_G09.new gfb2y 1776:03: R verylong
245070.headnode03 SUB10_G09.new ms208c 1739:05: R verylong
245079.headnode03 SUB20_G09.new ms208c 1932:05: R verylong
245089.headnode03 SUB2_G09.new ms208c 1926:46: R verylong
245164.headnode03 SUB45_G09.new gfb2y 1547:39: R verylong
245172.headnode03 SUB20_G09.new gfb2y 1466:26: R verylong
245176.headnode03 SUB3_G09.new gfb2y 1019:17: R verylong
245177.headnode03 SUB41_G09.new gfb2y 975:43:3 R verylong
245204.headnode03 SUB8_G09.new ms208c 1193:56: R verylong
245205.headnode03 SUB_G09.new ms208c 1157:09: R verylong
245206.headnode03 SUB33_G09.new ms208c 1081:30: R verylong
245351.headnode03 SUB38_G09.new ms208c 293:49:2 R verylong
245352.headnode03 SUB5_G09.new ms208c 293:57:1 R verylong
245358.headnode03 SUB7_G09.new ms208c 225:48:3 R verylong
245370.headnode03 SUB1_G09.new 1107184o 1040:47: R verylong
245435.headnode03 SUB_G09.new gfb2y 260:11:4 R verylong
245442.headnode03 SUB39_G09.new ms208c 109:20:3 R verylong
245445.headnode03 SUB9_G09.new ms208c 103:36:2 R verylong
245446.headnode03 SUB4_G09.new gfb2y 218:19:1 R verylong
245463.headnode03 SUB28_G09.new ms208c 41:51:14 R verylong
245464.headnode03 SUB32_G09.new ms208c 0 Q verylong
245465.headnode03 SUB14_G09.new ms208c 0 Q verylong
245466.headnode03 SUB23_G09.new ms208c 0 Q verylong
245467.headnode03 SUB30_G09.new ms208c 0 Q verylong
245486.headnode03 SUB1_G09.new 1002159f 953:47:5 R verylong
245531.headnode03 SUB25_G09.new ms208c 0 Q verylong
245589.headnode03 SUB21_G09.new ms208c 0 Q verylong
245740.headnode03 SUB23_G09.new gfb2y 41:14:51 R verylong
245752.headnode03 SUB2_G09.new gfb2y 38:30:03 R verylong
245755.headnode03 SUB32_G09.new gfb2y 34:38:15 R verylong
245758.headnode03 SUB38_G09.new gfb2y 33:52:04 R verylong
245759.headnode03 SUB25_G09.new gfb2y 31:20:48 R verylong
245828.headnode03 SUB9_G09.new gfb2y 0 Q verylong

Passing the –a option to qstat gives more information. SessID is the process pid on the
execution node, note this is not recorded for mpi jobs, NDS is the number of nodes requested
and TSK is the number of processors Req’d Time & Elap Time refer to CPU time. (Note for
jobs running on more than one node the Sess ID is given as 0)

[root@headnode04 export]# qstat -a

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
245017.headnode03.cent gfb2y verylong SUB10_G09.new 8598 1 8 -- 3000:00:0 R 1776:03:1
245070.headnode03.cent ms208c verylong SUB10_G09.new 10008 1 8 -- 3000:00:0 R 1739:05:2
245079.headnode03.cent ms208c verylong SUB20_G09.new 9468 1 8 -- 3000:00:0 R 1932:05:3
245089.headnode03.cent ms208c verylong SUB2_G09.new 10190 1 8 -- 3000:00:0 R 1926:46:4
245164.headnode03.cent gfb2y verylong SUB45_G09.new 18769 1 8 -- 3000:00:0 R 1547:39:2
245172.headnode03.cent gfb2y verylong SUB20_G09.new 33090 1 8 -- 3000:00:0 R 1466:26:4
245176.headnode03.cent gfb2y verylong SUB3_G09.new 57535 1 8 -- 3000:00:0 R 1019:17:1
245177.headnode03.cent gfb2y verylong SUB41_G09.new 8962 1 8 -- 3000:00:0 R 975:43:31
245204.headnode03.cent ms208c verylong SUB8_G09.new 51805 1 8 -- 3000:00:0 R 1193:56:3
245205.headnode03.cent ms208c verylong SUB_G09.new 45770 1 8 -- 3000:00:0 R 1157:09:5
245206.headnode03.cent ms208c verylong SUB33_G09.new 58638 1 8 -- 3000:00:0 R 1081:30:1
245351.headnode03.cent ms208c verylong SUB38_G09.new 30180 1 8 -- 3000:00:0 R 293:58:42
245352.headnode03.cent ms208c verylong SUB5_G09.new 27263 1 8 -- 3000:00:0 R 293:57:19
245358.headnode03.cent ms208c verylong SUB7_G09.new 43759 1 8 -- 3000:00:0 R 225:48:39
245370.headnode03.cent 1107184o verylong SUB1_G09.new 59552 1 8 -- 3000:00:0 R 1040:47:4
245435.headnode03.cent gfb2y verylong SUB_G09.new 27488 1 8 -- 3000:00:0 R 260:11:46
245442.headnode03.cent ms208c verylong SUB39_G09.new 9191 1 8 -- 3000:00:0 R 109:20:39
245445.headnode03.cent ms208c verylong SUB9_G09.new 55255 1 8 -- 3000:00:0 R 103:42:25
245446.headnode03.cent gfb2y verylong SUB4_G09.new 51079 1 8 -- 3000:00:0 R 218:19:15
245463.headnode03.cent ms208c verylong SUB28_G09.new 30234 1 8 -- 3000:00:0 R 41:51:14
245464.headnode03.cent ms208c verylong SUB32_G09.new -- 1 8 -- 3000:00:0 Q --
245465.headnode03.cent ms208c verylong SUB14_G09.new -- 1 8 -- 3000:00:0 Q --
245466.headnode03.cent ms208c verylong SUB23_G09.new -- 1 8 -- 3000:00:0 Q --
245467.headnode03.cent ms208c verylong SUB30_G09.new -- 1 8 -- 3000:00:0 Q --
245486.headnode03.cent 1002159f verylong SUB1_G09.new 2989 1 8 -- 3000:00:0 R 953:47:54
245531.headnode03.cent ms208c verylong SUB25_G09.new -- 1 8 -- 3000:00:0 Q --
245589.headnode03.cent ms208c verylong SUB21_G09.new -- 1 8 -- 3000:00:0 Q --
245740.headnode03.cent gfb2y verylong SUB23_G09.new 57724 1 8 -- 3000:00:0 R 41:14:51
245752.headnode03.cent gfb2y verylong SUB2_G09.new 30469 1 8 -- 3000:00:0 R 38:40:50
245755.headnode03.cent gfb2y verylong SUB32_G09.new 23118 1 8 -- 3000:00:0 R 34:38:15
245758.headnode03.cent gfb2y verylong SUB38_G09.new 12564 1 8 -- 3000:00:0 R 34:00:35
245759.headnode03.cent gfb2y verylong SUB25_G09.new 3754 1 8 -- 3000:00:0 R 31:28:09
245828.headnode03.cent gfb2y verylong SUB9_G09.new -- 1 8 -- 3000:00:0 Q --

You can also request only idle jobs with qstat –i

[root@headnode04 export]# qstat -i

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
245464.headnode03.cent ms208c verylong SUB32_G09.new -- 1 8 -- 3000:00:0 Q --
245465.headnode03.cent ms208c verylong SUB14_G09.new -- 1 8 -- 3000:00:0 Q --
245466.headnode03.cent ms208c verylong SUB23_G09.new -- 1 8 -- 3000:00:0 Q --
245467.headnode03.cent ms208c verylong SUB30_G09.new -- 1 8 -- 3000:00:0 Q --
245531.headnode03.cent ms208c verylong SUB25_G09.new -- 1 8 -- 3000:00:0 Q --
245589.headnode03.cent ms208c verylong SUB21_G09.new -- 1 8 -- 3000:00:0 Q --
245828.headnode03.cent gfb2y verylong SUB9_G09.new -- 1 8 -- 3000:00:0 Q --
245831.headnode03.cent ms208c verylong SUB24_G09.new -- 1 8 -- 3000:00:0 Q --

or running jobs with qstat –r

[root@headnode04 export]# qstat -r

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
245017.headnode03.cent gfb2y verylong SUB10_G09.new 8598 1 8 -- 3000:00:0 R 1776:55:2
245070.headnode03.cent ms208c verylong SUB10_G09.new 10008 1 8 -- 3000:00:0 R 1739:59:1
245079.headnode03.cent ms208c verylong SUB20_G09.new 9468 1 8 -- 3000:00:0 R 1933:05:2
245089.headnode03.cent ms208c verylong SUB2_G09.new 10190 1 8 -- 3000:00:0 R 1927:46:4
245164.headnode03.cent gfb2y verylong SUB45_G09.new 18769 1 8 -- 3000:00:0 R 1548:39:1
245172.headnode03.cent gfb2y verylong SUB20_G09.new 33090 1 8 -- 3000:00:0 R 1467:25:3
245176.headnode03.cent gfb2y verylong SUB3_G09.new 57535 1 8 -- 3000:00:0 R 1020:17:1
245177.headnode03.cent gfb2y verylong SUB41_G09.new 8962 1 8 -- 3000:00:0 R 976:43:28
245204.headnode03.cent ms208c verylong SUB8_G09.new 51805 1 8 -- 3000:00:0 R 1194:56:2
245205.headnode03.cent ms208c verylong SUB_G09.new 45770 1 8 -- 3000:00:0 R 1158:09:1
245206.headnode03.cent ms208c verylong SUB33_G09.new 58638 1 8 -- 3000:00:0 R 1082:30:1
245351.headnode03.cent ms208c verylong SUB38_G09.new 30180 1 8 -- 3000:00:0 R 294:54:54
245352.headnode03.cent ms208c verylong SUB5_G09.new 27263 1 8 -- 3000:00:0 R 294:55:00
245358.headnode03.cent ms208c verylong SUB7_G09.new 43759 1 8 -- 3000:00:0 R 226:48:03
245370.headnode03.cent 1107184o verylong SUB1_G09.new 59552 1 8 -- 3000:00:0 R 1041:42:5
245435.headnode03.cent gfb2y verylong SUB_G09.new 27488 1 8 -- 3000:00:0 R 261:11:45
245442.headnode03.cent ms208c verylong SUB39_G09.new 9191 1 8 -- 3000:00:0 R 110:20:37
245445.headnode03.cent ms208c verylong SUB9_G09.new 55255 1 8 -- 3000:00:0 R 104:42:21
245446.headnode03.cent gfb2y verylong SUB4_G09.new 51079 1 8 -- 3000:00:0 R 219:16:18
245463.headnode03.cent ms208c verylong SUB28_G09.new 30234 1 8 -- 3000:00:0 R 42:51:12
245486.headnode03.cent 1002159f verylong SUB1_G09.new 2989 1 8 -- 3000:00:0 R 954:47:53
245740.headnode03.cent gfb2y verylong SUB23_G09.new 57724 1 8 -- 3000:00:0 R 42:08:50
245752.headnode03.cent gfb2y verylong SUB2_G09.new 30469 1 8 -- 3000:00:0 R 39:36:02

Passing the –n option gives further information as to the nodes the jobs are executing on.
Torque notionally allocates jobs to each processor – the second line of each job tells you the
nodes the job is running on.

[root@headnode04 export]# qstat -n

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
245017.headnode03.cent gfb2y verylong SUB10_G09.new 8598 1 8 -- 3000:00:0 R 1777:06:5
 node072+node072+node072+node072+node072+node072+node072+node072
245070.headnode03.cent ms208c verylong SUB10_G09.new 10008 1 8 -- 3000:00:0 R 1740:10:0
 node072+node072+node072+node072+node072+node072+node072+node072
245079.headnode03.cent ms208c verylong SUB20_G09.new 9468 1 8 -- 3000:00:0 R 1933:17:2
 node065+node065+node065+node065+node065+node065+node065+node065
245089.headnode03.cent ms208c verylong SUB2_G09.new 10190 1 8 -- 3000:00:0 R 1927:58:4
 node068+node068+node068+node068+node068+node068+node068+node068
245164.headnode03.cent gfb2y verylong SUB45_G09.new 18769 1 8 -- 3000:00:0 R 1548:53:5
 node027+node027+node027+node027+node027+node027+node027+node027
245172.headnode03.cent gfb2y verylong SUB20_G09.new 33090 1 8 -- 3000:00:0 R 1467:42:2
 node069+node069+node069+node069+node069+node069+node069+node069
245176.headnode03.cent gfb2y verylong SUB3_G09.new 57535 1 8 -- 3000:00:0 R 1020:29:1
 node065+node065+node065+node065+node065+node065+node065+node065
245177.headnode03.cent gfb2y verylong SUB41_G09.new 8962 1 8 -- 3000:00:0 R 977:00:47
 node071+node071+node071+node071+node071+node071+node071+node071
245204.headnode03.cent ms208c verylong SUB8_G09.new 51805 1 8 -- 3000:00:0 R 1195:11:0
 node070+node070+node070+node070+node070+node070+node070+node070
245205.headnode03.cent ms208c verylong SUB_G09.new 45770 1 8 -- 3000:00:0 R 1158:21:1
 node063+node063+node063+node063+node063+node063+node063+node063
245206.headnode03.cent ms208c verylong SUB33_G09.new 58638 1 8 -- 3000:00:0 R 1082:46:5
 node067+node067+node067+node067+node067+node067+node067+node067
245351.headnode03.cent ms208c verylong SUB38_G09.new 30180 1 8 -- 3000:00:0 R 295:04:19
 node032+node032+node032+node032+node032+node032+node032+node032
245352.headnode03.cent ms208c verylong SUB5_G09.new 27263 1 8 -- 3000:00:0 R 295:08:40
 node031+node031+node031+node031+node031+node031+node031+node031
245358.headnode03.cent ms208c verylong SUB7_G09.new 43759 1 8 -- 3000:00:0 R 227:04:58
 node069+node069+node069+node069+node069+node069+node069+node069
245370.headnode03.cent 1107184o verylong SUB1_G09.new 59552 1 8 -- 3000:00:0 R 1041:57:5
 node072+node072+node072+node072+node072+node072+node072+node072
245435.headnode03.cent gfb2y verylong SUB_G09.new 27488 1 8 -- 3000:00:0 R 261:23:44
 node063+node063+node063+node063+node063+node063+node063+node063
245442.headnode03.cent ms208c verylong SUB39_G09.new 9191 1 8 -- 3000:00:0 R 110:37:57
 node071+node071+node071+node071+node071+node071+node071+node071
245445.headnode03.cent ms208c verylong SUB9_G09.new 55255 1 8 -- 3000:00:0 R 104:48:20
 node066+node066+node066+node066+node066+node066+node066+node066
245446.headnode03.cent gfb2y verylong SUB4_G09.new 51079 1 8 -- 3000:00:0 R 219:31:12
 node062+node062+node062+node062+node062+node062+node062+node062
245463.headnode03.cent ms208c verylong SUB28_G09.new 30234 1 8 -- 3000:00:0 R 43:03:11
 node064+node064+node064+node064+node064+node064+node064+node064
245464.headnode03.cent ms208c verylong SUB32_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245465.headnode03.cent ms208c verylong SUB14_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245466.headnode03.cent ms208c verylong SUB23_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245467.headnode03.cent ms208c verylong SUB30_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245486.headnode03.cent 1002159f verylong SUB1_G09.new 2989 1 8 -- 3000:00:0 R 954:59:52
 node066+node066+node066+node066+node066+node066+node066+node066
245531.headnode03.cent ms208c verylong SUB25_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245589.headnode03.cent ms208c verylong SUB21_G09.new -- 1 8 -- 3000:00:0 Q --
 --
245740.headnode03.cent gfb2y verylong SUB23_G09.new 57724 1 8 -- 3000:00:0 R 42:26:49
 node066+node066+node066+node066+node066+node066+node066+node066
245752.headnode03.cent gfb2y verylong SUB2_G09.new 30469 1 8 -- 3000:00:0 R 39:46:50
 node064+node064+node064+node064+node064+node064+node064+node064
245755.headnode03.cent gfb2y verylong SUB32_G09.new 23118 1 8 -- 3000:00:0 R 35:50:14
 node067+node067+node067+node067+node067+node067+node067+node067
245758.headnode03.cent gfb2y verylong SUB38_G09.new 12564 1 8 -- 3000:00:0 R 35:05:33
 node070+node070+node070+node070+node070+node070+node070+node070
245759.headnode03.cent gfb2y verylong SUB25_G09.new 3754 1 8 -- 3000:00:0 R 32:34:08
 node068+node068+node068+node068+node068+node068+node068+node068
245828.headnode03.cent gfb2y verylong SUB9_G09.new -- 1 8 -- 3000:00:0 Q --
 --

The next option I want to look at is the –f option (full) – I have chosen to give it a job number
in the example below to limit the output, qstat –f on its own will give the information for every
job in the queue – things to note here are the resources requested (Resource_List.*) and the
resources used so far (resources_used.*)

Also the variable list & path lists can be useful in problem solving

[root@headnode04 export]# qstat -f 246074
Job Id: 246074.headnode03.cent.gla.ac.uk
 Job_Name = test2.sh
 Job_Owner = mjm4y@headnode04.cent.gla.ac.uk
 resources_used.cput = 00:00:00
 resources_used.mem = 4656kb
 resources_used.vmem = 251176kb
 resources_used.walltime = 00:07:07
 job_state = R
 queue = short
 server = headnode03.cent.gla.ac.uk
 Checkpoint = u
 ctime = Mon Dec 1 14:58:46 2014
 Error_Path = headnode04.cent.gla.ac.uk:/export/home/mjm4y/test2.sh.e246074

 exec_host = node058.hpc.gla.ac.uk/0+node058.hpc.gla.ac.uk/1+node057.hpc.gl
 a.ac.uk/0+node057.hpc.gla.ac.uk/1
 exec_port = 15003+15003+15003+15003
 Hold_Types = n
 Join_Path = n
 Keep_Files = n
 Mail_Points = a
 mtime = Mon Dec 1 14:59:38 2014
 Output_Path = headnode04.cent.gla.ac.uk:/export/home/mjm4y/test2.sh.o24607
 4
 Priority = 0
 qtime = Mon Dec 1 14:58:46 2014
 Rerunable = True
 Resource_List.cput = 01:00:00
 Resource_List.neednodes = 2:ppn=2
 Resource_List.nodect = 2
 Resource_List.nodes = 2:ppn=2
 Resource_List.walltime = 01:00:00
 session_id = 8861
 substate = 42
 Variable_List = PBS_O_QUEUE=feed,PBS_O_HOME=/export/home/mjm4y,
 PBS_O_LOGNAME=mjm4y,
 PBS_O_PATH=/usr/kerberos/bin:/opt/PBS/bin:/usr/local/bin:/bin:/usr/bi
 n,PBS_O_MAIL=/var/spool/mail/mjm4y,PBS_O_SHELL=/bin/bash,
 PBS_O_LANG=en_US.UTF-8,PBS_O_WORKDIR=/export/home/mjm4y,
 PBS_O_HOST=headnode03.cent.gla.ac.uk,
 PBS_O_SERVER=headnode03.cent.gla.ac.uk
 euser = mjm4y
 egroup = users
 hashname = 246074.headnode03.cent.gla.ac.uk
 queue_rank = 2136
 queue_type = E
 etime = Mon Dec 1 14:58:46 2014
 submit_args = -l nodes=2:ppn=2 test2.sh
 start_time = Mon Dec 1 14:58:48 2014
 Walltime.Remaining = 3120
 start_count = 1
 fault_tolerant = False
 job_radix = 0
 submit_host = headnode04.cent.gla.ac.uk

[root@headnode04 export]#

The options –a, –i, -n and –r can be combined with –u username to see only one users jobs

[root@headnode04 export]# qstat -n -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
246074.headnode03.cent mjm4y short test2.sh 8861 2 4 -- 01:00:00 R 00:00:00
 node058+node058+node057+node057
[root@headnode04 export]#

There are a few more options which give useful summary information.

The –q option gives a readout detailing the queues on the system. Of note here are the
current maximum cpu time(CPU Time)and maximum walltime (Walltime) for each queue. It
also gives the number of jobs running (Run) and waiting (Que) in each queue. The Lm
column should show the maximum number of running jobs, however it only shows the first 2
digits so the 1000 maximum running jobs for the short queue shows as 12 on this.

[root@headnode04 export]# qstat -q

server: node000.hpc.gla.ac.uk

Queue Memory CPU Time Walltime Node Run Que Lm State
---------------- ------ -------- -------- ---- --- --- -- -----
ottomsc -- 50:00:00 24:00:00 -- 0 0 10 E R
bioinf-stud2 -- -- -- -- 0 0 10 E R
biobank -- -- -- -- 0 0 96 E R
bioinf-stud -- -- -- -- 0 0 40 E R
long -- 500:00:0 50:00:00 -- 13 1 12 E R
veryparrallel -- -- -- -- 0 0 4 E R
bioinf-stud3 -- -- -- -- 0 0 4 E R
verylong -- -- -- -- 15 28 12 E R
gpu -- -- 192:00:0 -- 0 0 7 E R
parallel -- -- -- -- 0 1 17 E R
feed -- -- -- -- 0 941 -- E R
short -- 10:00:00 02:00:00 -- 0 1 10 E R
bioinf-verylong -- -- -- -- 4 0 96 E R
bioinf-parallel -- -- -- -- 0 0 5 E R
 ----- -----
 32 972

Another summary option is –Q. Max is maximum number of running jobs, Tot is the number
currently running Ena & Str is enabled and started, should always be yes or there is a
problem somewhere. Then the next columns represent the various possible states of jobs
Que is waiting in the queue, Run is currently running, Hld is job held for some reason, Wat is
the job waiting for something to happen before it can proceed, Trn is job transiting and Ext is
job exiting.

[root@headnode04 export]# qstat -Q
Queue Max Tot Ena Str Que Run Hld Wat Trn Ext T Cpt
---------------- --- ---- -- -- --- --- --- --- --- --- - ---
ottomsc 100 0 yes yes 0 0 0 0 0 0 E 0
bioinf-stud2 10 0 yes yes 0 0 0 0 0 0 E 0
biobank 96 0 yes yes 0 0 0 0 0 0 E 0
bioinf-stud 40 0 yes yes 0 0 0 0 0 0 E 0
long 125 16 yes yes 1 13 0 0 0 0 E 2
veryparrallel 4 0 yes yes 0 0 0 0 0 0 E 0
bioinf-stud3 4 0 yes yes 0 0 0 0 0 0 E 0
verylong 120 46 yes yes 28 15 0 0 0 0 E 3
gpu 7 0 yes yes 0 0 0 0 0 0 E 0
parallel 17 1 yes yes 1 0 0 0 0 0 E 0
feed 0 941 yes yes 24 0 917 0 0 0 R 0
short 1000 1 yes yes 1 0 0 0 0 0 E 0
bioinf-verylong 96 4 yes yes 0 4 0 0 0 0 E 0
bioinf-parallel 5 0 yes yes 0 0 0 0 0 0 E 0
[root@headnode04 export]#

The final option I want to discuss just now is the –Qf option which gives a verbose description
of each queue. The additional information this gives is the additional properties currently
assigned to each queue – resources_max – the maximum possible for a job running on that
queue, resourses_default – the resources assigned to a job entering that queue unless
something different has been requested. – resources_min – the minimum resources request
needed before a job will be assigned to this queue (if a particular resource is not specified at
submit time then the minimum check is not applied).

[root@headnode04 export]# qstat -Qf
Queue: ottomsc
 queue_type = Execution
 max_queuable = 200
 max_user_queuable = 3
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 100
 resources_max.cput = 50:00:00
 resources_max.procct = 4
 resources_max.walltime = 24:00:00
 resources_min.procct = 1
 resources_default.cput = 01:00:00
 resources_default.procct = 1
 resources_default.walltime = 01:00:00
 acl_group_enable = True
 acl_groups = ottomsc
 acl_group_sloppy = True
 mtime = 1715596153
 enabled = True
 started = True

Queue: bioinf-stud2
 queue_type = Execution
 max_queuable = 20
 max_user_queuable = 3
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 10
 resources_max.procct = 16
 resources_min.procct = 5
 resources_default.cput = 01:00:00
 resources_default.procct = 5
 resources_default.walltime = 01:00:00
 acl_group_enable = True
 acl_groups = bioinf-stud
 acl_group_sloppy = True
 mtime = 1715596153
 enabled = True
 started = True

Queue: biobank
 queue_type = Execution
 max_queuable = 100
 max_user_queuable = 25
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 96
 resources_min.cput = 24:00:01
 resources_min.walltime = 24:00:01
 resources_default.cput = 288:00:00
 resources_default.procct = 1
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = biobank
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.mem = 0b
 resources_assigned.nodect = 0
 enabled = True
 started = True

Queue: bioinf-stud
 queue_type = Execution
 max_queuable = 100
 max_user_queuable = 5
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 40
 resources_max.procct = 4
 resources_default.cput = 01:00:00
 resources_default.procct = 1
 resources_default.walltime = 01:00:00
 acl_group_enable = True
 acl_groups = bioinf-stud
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 0
 enabled = True
 started = True

Queue: long
 queue_type = Execution
 max_queuable = 400
 max_user_queuable = 50
 total_jobs = 16
 state_count = Transit:0 Queued:1 Held:0 Waiting:0 Running:13 Exiting:0 Com
 plete:2
 max_running = 125
 resources_max.cput = 500:00:00
 resources_max.procct = 16
 resources_max.walltime = 50:00:00
 resources_default.cput = 24:00:00
 resources_default.procct = 1
 resources_default.walltime = 24:00:00
 acl_group_enable = True
 acl_groups = research-staff,res-studs
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 15
 enabled = True
 started = True

Queue: veryparrallel
 queue_type = Execution
 max_queuable = 10
 max_user_queuable = 2
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 4
 resources_max.procct = 128
 resources_min.procct = 17
 resources_default.nodes = 2
 resources_default.procct = 33
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = research-staff,res-studs
 acl_group_sloppy = True
 mtime = 1715596153
 enabled = True
 started = True

Queue: bioinf-stud3
 queue_type = Execution
 max_queuable = 10
 max_user_queuable = 1
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 4
 resources_max.procct = 32
 resources_min.procct = 17
 resources_default.cput = 01:00:00
 resources_default.procct = 17
 resources_default.walltime = 01:00:00
 acl_group_enable = True

 acl_groups = bioinf-stud
 acl_group_sloppy = True
 mtime = 1715596153
 enabled = True
 started = True

Queue: verylong
 queue_type = Execution
 max_queuable = 250
 max_user_queuable = 35
 total_jobs = 46
 state_count = Transit:0 Queued:28 Held:0 Waiting:0 Running:15 Exiting:0 Co
 mplete:3
 max_running = 120
 resources_max.procct = 16
 resources_min.cput = 24:00:01
 resources_min.walltime = 24:00:01
 resources_default.cput = 288:00:00
 resources_default.procct = 1
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = research-staff,res-studs
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 15
 enabled = True
 started = True

Queue: gpu
 queue_type = Execution
 max_queuable = 200
 max_user_queuable = 25
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 7
 resources_max.procct = 4
 resources_max.walltime = 192:00:00
 resources_default.procct = 1
 resources_default.walltime = 24:00:00
 acl_group_enable = True
 acl_groups = gpu-users
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 0
 enabled = True
 started = True

Queue: parallel
 queue_type = Execution
 max_queuable = 50
 max_user_queuable = 10
 total_jobs = 1
 state_count = Transit:0 Queued:1 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 17
 resources_max.procct = 32
 resources_min.procct = 17
 resources_default.nodes = 2
 resources_default.procct = 17
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = research-staff,res-studs
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 0
 enabled = True
 started = True

Queue: feed
 queue_type = Route
 total_jobs = 941
 state_count = Transit:0 Queued:24 Held:917 Waiting:0 Running:0 Exiting:0 C
 omplete:0
 mtime = 1715596153
 route_destinations = short,long,bioinf-stud,bioinf-stud2,bioinf-stud3,
 bioinf-verylong,bioinf-parallel,biobank,verylong,parallel,veryparrallel,

 ottomsc
 enabled = True
 started = True

Queue: short
 queue_type = Execution
 max_queuable = 1500
 max_user_queuable = 175
 total_jobs = 1
 state_count = Transit:0 Queued:1 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 1000
 resources_max.cput = 10:00:00
 resources_max.procct = 16
 resources_max.walltime = 02:00:00
 resources_default.cput = 01:00:00
 resources_default.procct = 1
 resources_default.walltime = 01:00:00
 acl_group_enable = True
 acl_groups = research-staff,res-studs
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 0
 enabled = True
 started = True

Queue: bioinf-verylong
 queue_type = Execution
 max_queuable = 300
 max_user_queuable = 25
 total_jobs = 4
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:4 Exiting:0 Comp
 lete:0
 max_running = 96
 resources_max.procct = 40
 resources_min.cput = 24:00:01
 resources_min.walltime = 24:00:01
 resources_default.cput = 288:00:00
 resources_default.procct = 1
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = bioinf-staff,bioinf-students,bioinf-stud
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.mem = 365072220160b
 resources_assigned.nodect = 4
 enabled = True
 started = True

Queue: bioinf-parallel
 queue_type = Execution
 max_queuable = 20
 total_jobs = 0
 state_count = Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0 Comp
 lete:0
 max_running = 5
 resources_max.procct = 40
 resources_min.procct = 17
 resources_default.procct = 17
 resources_default.walltime = 288:00:00
 acl_group_enable = True
 acl_groups = bioinf-staff,bioinf-students,bioinf-stud
 acl_group_sloppy = True
 mtime = 1715596153
 resources_assigned.nodect = 0
 enabled = True
 started = True

[root@headnode04 export]#

Useful Commands in PBS/TORQUE & Maui

showq

/opt/maui/bin/showq

The command showq comes as part of the maui scheduler package. This can be useful if
there are jobs waiting on the queue & you want to get an idea of when your job may start
particularly useful if you require a number of processors – the order it lists active jobs is
starting with the job that will finish first. It also gives the percentage of the cluster that is
currently being used – in this case 50.84% of the processors and 100.00% of the nodes.
There is an option which can be passed to showq:- -b will give you a list of blocked jobs with
a reason why the job is blocked.

[root@headnode03 home2]# showq
ACTIVE JOBS--------------------
JOBNAME USERNAME STATE PROC REMAINING STARTTIME

552792 gfb2y Running 8 5:20:42 Sun May 26 21:53:57
552793 gfb2y Running 8 11:53:53 Mon May 27 04:27:08
552794 gfb2y Running 8 12:03:33 Mon May 27 04:36:48
552799 gfb2y Running 8 19:54:14 Mon May 27 12:27:29
552796 gfb2y Running 8 20:55:12 Mon May 27 13:28:27
552800 gfb2y Running 8 20:55:12 Mon May 27 13:28:27
552801 gfb2y Running 8 21:44:17 Mon May 27 14:17:32
552686 gfb2y Running 8 22:03:55 Mon May 27 14:37:10
552795 gfb2y Running 8 22:13:44 Mon May 27 14:46:59
552784 gfb2y Running 10 1:00:01:12 Mon May 27 16:34:27
552808 hx10z Running 1 1:04:23:40 Mon May 27 20:56:55
552813 tss7r Running 16 1:14:13:30 Tue May 28 09:46:45
552839[17] 2630252a Running 8 1:22:26:29 Tue May 28 16:59:44
552839[18] 2630252a Running 8 1:22:28:33 Tue May 28 17:01:48
552839[21] 2630252a Running 8 1:22:45:36 Tue May 28 17:18:51
552839[22] 2630252a Running 8 1:22:55:25 Tue May 28 17:28:40
552839[23] 2630252a Running 8 1:23:14:32 Tue May 28 17:47:47
552839[57] 2630252a Running 8 1:23:30:33 Tue May 28 18:03:48
552839[24] 2630252a Running 8 1:23:43:59 Tue May 28 18:17:14
552839[25] 2630252a Running 8 1:23:46:03 Tue May 28 18:19:18
552814 2762262d Running 20 2:03:23:50 Tue May 28 09:57:05
549874 gfb2y Running 8 13:01:03:16 Fri Apr 19 17:36:31
552639 jw269k Running 11 16:08:10:33 Sun May 26 08:43:48
552646 jw269k Running 11 16:11:21:12 Sun May 26 11:54:27
551791 gfb2y Running 8 23:19:39:21 Tue Apr 30 12:12:36
551873 gfb2y Running 8 23:19:52:40 Tue Apr 30 12:25:55
551935 gfb2y Running 8 27:03:31:14 Fri May 3 20:04:29
552810 2762262d Running 20 32:12:32:50 Mon May 27 23:06:05
552002 gfb2y Running 8 38:22:45:14 Wed May 15 15:18:29
552495 gfb2y Running 8 50:13:17:57 Mon May 27 05:51:12
551957 gfb2y Running 8 INFINITY Sat May 4 15:09:56
552673 2188196m Running 16 INFINITY Wed May 22 12:46:54

 32 Active Jobs 297 of 1027 Processors Active (28.92%)
 18 of 25 Nodes Active (72.00%)

IDLE JOBS----------------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

552839[26] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[27] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[28] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[29] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[30] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[31] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[32] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[33] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[34] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37

552839[35] 2630252a Idle 8 2:00:00:00 Tue May 28 14:07:37
552839[36] 2630252a Idle 8 2:00:00:00 Tue May 28 15:06:56
552839[37] 2630252a Idle 8 2:00:00:00 Tue May 28 15:12:28
552839[39] 2630252a Idle 8 2:00:00:00 Tue May 28 15:25:22
552839[40] 2630252a Idle 8 2:00:00:00 Tue May 28 15:29:33
552839[42] 2630252a Idle 8 2:00:00:00 Tue May 28 15:44:08
552839[43] 2630252a Idle 8 2:00:00:00 Tue May 28 15:48:39
552839[44] 2630252a Idle 8 2:00:00:00 Tue May 28 16:05:04
552839[45] 2630252a Idle 8 2:00:00:00 Tue May 28 16:07:05
552839[46] 2630252a Idle 8 2:00:00:00 Tue May 28 16:07:45
552839[49] 2630252a Idle 8 2:00:00:00 Tue May 28 16:59:51
552839[50] 2630252a Idle 8 2:00:00:00 Tue May 28 17:01:51
552839[51] 2630252a Idle 8 2:00:00:00 Tue May 28 17:08:53
552839[52] 2630252a Idle 8 2:00:00:00 Tue May 28 17:17:56
552839[53] 2630252a Idle 8 2:00:00:00 Tue May 28 17:18:46
552839[55] 2630252a Idle 8 2:00:00:00 Tue May 28 17:28:29
552839[56] 2630252a Idle 8 2:00:00:00 Tue May 28 17:47:55
552839[58] 2630252a Idle 8 2:00:00:00 Tue May 28 18:16:54
552839[59] 2630252a Idle 8 2:00:00:00 Tue May 28 18:19:15

28 Idle Jobs

BLOCKED JOBS----------------
JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

545726 gy11w Idle 1 12:00:00 Tue Mar 5 07:27:17
550513 2860910l BatchHold 20 4:03:00:00 Mon Apr 15 15:25:59
550531 2630252a BatchHold 1 1:00:00 Mon Apr 15 19:39:31

Total Jobs: 63 Active Jobs: 32 Idle Jobs: 28 Blocked Jobs: 3

Showq –b gives the list of blocked jobs along with a reason why the job is blocked.

[root@headnode03 home2]# showq -b
 JobName User Reason

 245464 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245465 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245466 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245467 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245531 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245589 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245828 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245831 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245833 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245895 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245899 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245900 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245903 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245919 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245904 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245908 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245915 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245994 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 245997 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246003 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246010 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246011 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246015 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246022 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246024 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246025 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246026 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246029 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246035 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246038 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246039 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246047 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246048 ms208c violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246051 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246052 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
 246053 gfb2y violates active HARD MAXJOB limit of 12 for class verylong user (R: 1, U: 12)
[root@headnode04 home2]#

Useful Commands in PBS/TORQUE & Maui

Additional useful Torque commannds

tracejob

/usr/local/bin/tracejob

This command will trawl the log files and return the results. Important options are –n the
number of days to look back into the log (ie tracejob –n 20 13049 look back 20 days in the
logs), the default is one day.

[test@headnode01 test]$ tracejob 13049

Job: 13049.headnode01.cent.gla.ac.uk

12/02/2005 13:34:06 S enqueuing into feed, state 1 hop 1
12/02/2005 13:34:06 S dequeuing from feed, state QUEUED
12/02/2005 13:34:06 S enqueuing into verylong, state 1 hop 1
12/02/2005 13:34:06 S Job Queued at request of test@headnode01.cent.gla.ac.uk,
owner = test@headnode01.cent.gla.ac.uk, job name =
 serandite_poten, queue = verylong
12/02/2005 13:34:08 S Job Modified at request of root@headnode01.cent.gla.ac.uk
12/02/2005 13:34:08 S Job Run at request of root@headnode01.cent.gla.ac.uk
12/02/2005 13:34:08 S Job Modified at request of root@headnode01.cent.gla.ac.uk
[test@headnode01 test]$

qdel

/usr/local/bin/qdel

This command takes a jobid as a parameter and removes that job from the queue,
terminating job execution if required.

-bash-3.2$ qstat -a -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247224.headnode03.cent mjm4y short one.sh 22776 1 1 -- 01:00:00 R --
247225.headnode03.cent mjm4y short one.sh 6419 1 1 -- 01:00:00 R --
247226.headnode03.cent mjm4y short one.sh 20545 1 1 -- 01:00:00 R --

-bash-3.2$ qdel 247225

-bash-3.2$ qstat -a -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247224.headnode03.cent mjm4y short one.sh 22776 1 1 -- 01:00:00 R --
247225.headnode03.cent mjm4y short one.sh 6419 1 1 -- 01:00:00 C 00:00:00
247226.headnode03.cent mjm4y short one.sh 20545 1 1 -- 01:00:00 R --

There is another option –p which is available to administrators to purge a job which cannot be
deleted by a user. If you are having difficulty deleting a job, mail me at
 it-hpc-support@glasgow.ac.uk.

pbsnodes

/usr/local/bin/pbsnodes

You would run this command with the –a option and you will get a list of all the nodes with
details of their configuration, you can also give it a node and the output will be restricted to
that node. The output consists of the state of the node (free – available for a job, jobexclusive
– all slots currently allocated to running jobs and down – unavailable. If there are jobs running
on the node the optional line jobs = is shown with the jobid(s) of the running jobs. np = gives
the number of job slots and status gives details of the arch, OS, memory, number of cpu’s
and current load on the machine. The properties line gives a list of any properties we have
assigned to a node, these can be used when you request resources for a job. Ie qsub –l
nodes=1:eightgpc will request a node with the property “eightgpc” (eg node059 below)

-bash-3.2$ /usr/local/bin/pbsnodes -a node059.hpc.gla.ac.uk node060.hpc.gla.ac.uk node061.hpc.gla.ac.uk
node059.hpc.gla.ac.uk
 state = free
 np = 64
 properties = centos7,eightgpc,cpunode,short,long,staging,bio7
 ntype = cluster
 jobs =
0/551935.headnode03.cent.gla.ac.uk,1/551935.headnode03.cent.gla.ac.uk,2/551935.headnode03.cent.gla.ac.uk,3/551935.h
eadnode03.cent.gla.ac.uk,4/551935.headnode03.cent.gla.ac.uk,5/551935.headnode03.cent.gla.ac.uk,6/551935.headnode03.
cent.gla.ac.uk,7/551935.headnode03.cent.gla.ac.uk
 status =
rectime=1716386591,varattr=,jobs=551935.headnode03.cent.gla.ac.uk,state=free,netload=75913472486358,gres=,loadave=8
.94,ncpus=64,physmem=528167776kb,availmem=564158048kb,totmem=586761052kb,idletime=3124807,nusers=2,nsessions=2,sess
ions=52512 61439,uname=Linux node059.hpc.gla.ac.uk 3.10.0-1160.95.1.el7.x86_64 #1 SMP Mon Jul 24 13:59:37 UTC 2023
x86_64,opsys=linux
 mom_service_port = 15002
 mom_manager_port = 15003

node060.hpc.gla.ac.uk
 state = free
 np = 64
 properties = centos7,eightgpc,cpunode,short,long,staging,bio7
 ntype = cluster
 jobs =
0/551873.headnode03.cent.gla.ac.uk,1/551873.headnode03.cent.gla.ac.uk,2/551873.headnode03.cent.gla.ac.uk,3/551873.h
eadnode03.cent.gla.ac.uk,4/551873.headnode03.cent.gla.ac.uk,5/551873.headnode03.cent.gla.ac.uk,6/551873.headnode03.
cent.gla.ac.uk,7/551873.headnode03.cent.gla.ac.uk
 status =
rectime=1716386606,varattr=,jobs=551873.headnode03.cent.gla.ac.uk,state=free,netload=134143534046165,gres=,loadave=
7.93,ncpus=64,physmem=528167776kb,availmem=565146984kb,totmem=586761052kb,idletime=3112126,nusers=2,nsessions=2,ses
sions=16091 60767,uname=Linux node060.hpc.gla.ac.uk 3.10.0-1160.95.1.el7.x86_64 #1 SMP Mon Jul 24 13:59:37 UTC 2023
x86_64,opsys=linux
 mom_service_port = 15002
 mom_manager_port = 15003

node061.hpc.gla.ac.uk
 state = free
 np = 64
 properties = centos7,eightgpc,cpunode,short,long,staging,bio7
 ntype = cluster
 jobs =
0/551791.headnode03.cent.gla.ac.uk,1/551791.headnode03.cent.gla.ac.uk,2/551791.headnode03.cent.gla.ac.uk,3/551791.h
eadnode03.cent.gla.ac.uk,4/551791.headnode03.cent.gla.ac.uk,5/551791.headnode03.cent.gla.ac.uk,6/551791.headnode03.
cent.gla.ac.uk,7/551791.headnode03.cent.gla.ac.uk,8/552677.headnode03.cent.gla.ac.uk,9/552677.headnode03.cent.gla.a
c.uk,10/552677.headnode03.cent.gla.ac.uk,11/552677.headnode03.cent.gla.ac.uk,12/552677.headnode03.cent.gla.ac.uk,13
/552677.headnode03.cent.gla.ac.uk,14/552677.headnode03.cent.gla.ac.uk,15/552677.headnode03.cent.gla.ac.uk,16/552677
.headnode03.cent.gla.ac.uk,17/552677.headnode03.cent.gla.ac.uk,18/552677.headnode03.cent.gla.ac.uk,19/552677.headno
de03.cent.gla.ac.uk,20/552677.headnode03.cent.gla.ac.uk,21/552677.headnode03.cent.gla.ac.uk,22/552677.headnode03.ce
nt.gla.ac.uk,23/552677.headnode03.cent.gla.ac.uk
 status = rectime=1716386591,varattr=,jobs=551791.headnode03.cent.gla.ac.uk
552677.headnode03.cent.gla.ac.uk,state=free,netload=61309435597730,gres=,loadave=22.75,ncpus=64,physmem=528167776kb
,availmem=574136480kb,totmem=590664540kb,idletime=602943,nusers=3,nsessions=3,sessions=19327 49203
51820,uname=Linux node061.hpc.gla.ac.uk 3.10.0-1160.88.1.el7.x86_64 #1 SMP Tue Mar 7 15:41:52 UTC 2023
x86_64,opsys=linux
 mom_service_port = 15002
 mom_manager_port = 15003

Useful Commands in PBS/TORQUE & Maui

Other Useful Maui Commands

showstart

/opt/maui/bin/showstart

This command gives an indication of when a job that is in the queue will start, it takes the
jobid as a parameter and returns output which will give an estimate of the likely start & end
time of your job (based on walltime). The example I have given below is for a job that is
already running so it gives a negative time to indicate that it is in the past. It also gives the
expected finish time (this is based on resources requested and not any qualitative
assessment of how well the job is running).

[test@headnode01 bin]$./showstart 12727
job 12727 requires 10 procs for 12:12:00:00
Earliest start in -4:12:49:21 on Mon Nov 28 00:05:35
Earliest completion in 7:23:10:39 on Sat Dec 10 12:05:35
Best Partition: DEFAULT

checkjob

/opt/maui/bin/checkjob

This allows you to check the status of a job that is currently running. Pass the
command a parameter of the jobid you wish to check.

[test@headnode01 bin]$./checkjob 12727

checking job 12727

State: Running
Creds: user:test group:test class:verylong qos:DEFAULT
WallTime: 4:12:54:53 of 12:12:00:00
SubmitTime: Mon Nov 28 00:01:38
 (Time Queued Total: 00:03:57 Eligible: 00:00:02)

StartTime: Mon Nov 28 00:05:35
Total Tasks: 10

Req[0] TaskCount: 10 Partition: DEFAULT
Network: [NONE] Memory >= 0 Disk >= 0 Swap >= 0
Opsys: [NONE] Arch: [NONE] Features: [NONE]
NodeCount: 6
Allocated Nodes:
[comp06:2][comp07:1][comp09:1][comp10:2]
[comp11:2][comp12:2]

IWD: [NONE] Executable: [NONE]
Bypass: 0 StartCount: 1
PartitionMask: [ALL]
Flags: RESTARTABLE

Reservation '12727' (-4:12:50:23 -> 7:23:09:37 Duration: 12:12:00:00)
PE: 10.00 StartPriority: 1

[test@headnode01 bin]$

canceljob

/opt/maui/bin/canceljob

This command takes a list of jobid’s as parameters and cancel’s those jobs

[test@headnode01 bin]$./canceljob 13050 13051 13052

job '13050' cancelled
job '13051' cancelled
job '13052' cancelled

[test@headnode01 bin]$

pbstop

/usr/bin/pbstop

This is quite a complicated command that shows the state of the cluster – it was written some
time ago and the default behaviour gives confusing output so I would suggest running it with
the options “-n -c 64 -m 1” this will give a section on each node showing what processors are
in use. It refreshes every 20 seconds, you can use page up and page down to scroll through
the output and should press q to quit.

pbstop -n -c 64 -m 1

see the manual pages for full information

man pbstop

Advanced Commands in PBS/TORQUE

qsub – advanced part one

Earlier we looked at the most commonly used options –I, -l, -m, -M, -N. To this I will add –W
which allows you to specify some additional attributes, and –t which introduces array jobs.

Qsub options

-t

This allows you to submit a group of similar/identical jobs as one and, optionally, restrict the
number of them running at any one time. You follow –t with a numeric range and/or discrete
numbers e.g

-t 0-5
will run 6 array tasks with array ids - 0,1,2,3,4,5

 -t 3,6,15
 will run 3 array tasks with array ids – 3,6,15

 -t 1-4,10,12-13
 will run 7 array tasks with array ids - 1,2,3,4,10,12,13

You can, optionally, restrict the array job to a maximum number of running tasks at any one
time by adding %n to the end of the command – where n is the maximum number you want
running. E.g.

 -t 0-5%2
 Will run 6 array tasks but no more than 2 at any one time

Here are the commands as you would put them in a script

#!/bin/bash

#PBS -l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2:centos7
#PBS –m abe
#PBS –M mjm4y@udcf.gla.ac.uk
#PBS –N TestArray
#PBS –t 0-20%5
/path/to/programme_to_run

So this script submits an array job of 21 tasks but only allows a maximum of 5 to run at any
one time. All 20 tasks will have the same Job ID but with a suffix of the array id

Ie 12345[0], 12345[1], ... 12345[19],12345[20]

On the execution node your task will run with the environment variable $PBS_JOBID equal to,
for example, 12345[9].headnode03.cent.gla.ac.uk.

 You have an additional environment variable - $PBS_ARRAYID - which you can use to
distinguish between the different job tasks with the job array from within your script.

Here is a simple example I put together to illustrate what you might want to do. I have created
a control file to control what each element of the job array does.

Here is the contents of arrayjob.sh

#! /bin/bash

#PBS -l cput=01:30:00,walltime=02:00:00,nodes=1:ppn=2:centos7
#PBS -m abe
#PBS -M mjm4y@udcf.gla.ac.uk
#PBS -N TestArray
#PBS -t 1-4%2

JOB=`grep $PBS_ARRAYID /export/home/mjm4y/array-job-test/array-jobs-files | awk '{print $2}'`
LOG=`grep $PBS_ARRAYID /export/home/mjm4y/array-job-test/array-jobs-files | awk '{print $3}'`
/export/home/mjm4y/array-job-test/$JOB > /export/home/mjm4y/array-job-test/$LOG

 Here we are submitting a four task array which has a maximum of 2 running tasks. It uses
the PBS_ARRAYID to query an input file for which job to run and the logfile to put the results
in.

The control file array-job-files consists of the following:-

1 one.sh first.log
2 two.sh second.log
3 three.sh third.log
4 four.sh fourth.log

You would submit arrayjob.sh as below (it picks up all the PBS commands from the top of the
script).

qsub arrayjob.sh

For each line in the control file the first entry is the array id, the second is the script to run and
the third is the name of the log file. Task 1 of the array job runs one.sh and puts the output
into the file first.log, task 2 runs two.sh and the output goes into second.log etc.

qstat advanced - arrays

If you try to query the running jobs with qstat you will see that the job array is listed
as a single job, however you are probably interested in the individual tasks of the job
array. To see the individual tasks you use the –t option, this can be combined with
the options –r, -i. –e, -a, -n and will expand the array to show individual tasks. For
example here is the output of qstat –a and qstat –at for 2 array jobs of 4 tasks each

[root@headnode04 ~]# qstat -a

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - --------------------------------------
246447[].headnode03.ce mjm4y short TestArray -- 1 2 -- 01:30:00 R --
246448[].headnode03.ce mjm4y short TestArray -- 1 2 -- 01:30:00 R --

[root@headnode04 ~]# qstat -at

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - --
246447[1].headnode03.c mjm4y short TestArray-1 31763 1 2 -- 01:30:00 R 00:23:17
246447[2].headnode03.c mjm4y short TestArray-2 6968 1 2 -- 01:30:00 R 00:23:16
246447[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 H --
246447[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --
246448[1].headnode03.c mjm4y short TestArray-1 5377 1 2 -- 01:30:00 R 00:23:10
246448[2].headnode03.c mjm4y short TestArray-2 22858 1 2 -- 01:30:00 R 00:23:10
246448[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 H --
246448[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --

Note there is a new status – H – which stands for job held, in this case because we
have stated that there will be a maximum of two tasks from the array running at any
one time, so for each job array there are two running tasks and two held tasks – as
the running jobs finish the held jobs will start.

For qstat –f you need to give the job id & array id. Ie qstat –f 26447[3]

tracejob advanced - arrays

With arrays you need to approach tracejob a little differently if you use it as before
then you get all the information about all the tasks in one section and it is not clear
which line belongs to which task

-bash-3.2$ tracejob 247213

Job: 247213[].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into feed, state 1 hop 1
12/16/2023 13:02:09 S dequeuing from feed, state QUEUED
12/16/2023 13:02:09 S enqueuing into short, state 1 hop 1
12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Run at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Run at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk

Instead what you can do is specify which task you would like to check as follows – I
have done this for all four tasks (the array is currently running)

-bash-3.2$ tracejob 247213[1]

Job: 247213[1].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Run at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk

-bash-3.2$ tracejob 247213[2]

Job: 247213[2].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Run at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk

-bash-3.2$ tracejob 247213[3]

Job: 247213[3].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1

-bash-3.2$ tracejob 247213[4]

Job: 247213[4].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1

Note if you give the job id with the brackets but no array id – as follows you get info
on the array job as a whole and nothing about the actual tasks

-bash-3.2$ tracejob 247213[]

Job: 247213[].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into feed, state 1 hop 1
12/16/2023 13:02:09 S dequeuing from feed, state QUEUED
12/16/2023 13:02:09 S enqueuing into short, state 1 hop 1

Then when the array job is complete you would see this:-

-bash-3.2$ tracejob 247213[]

Job: 247213[].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into feed, state 1 hop 1
12/16/2023 13:02:09 S dequeuing from feed, state QUEUED
12/16/2023 13:02:09 S enqueuing into short, state 1 hop 1
12/16/2023 13:10:31 S dequeuing from short, state COMPLETE

i.e. nothing is reported for the array tasks – here is the output for an array task that
has completed.

-bash-3.2$ tracejob 247213[1]

Job: 247213[1].headnode03.cent.gla.ac.uk

12/16/2023 13:02:09 S enqueuing into short, state 2 hop 1
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Run at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:02:10 S Job Modified at request of root@headnode03.cent.gla.ac.uk
12/16/2023 13:03:50 S Exit_status=0 resources_used.cput=00:00:00
resources_used.mem=3980kb resources_used.vmem=252752kb
 resources_used.walltime=00:01:40
12/16/2023 13:03:50 S on_job_exit valid pjob: 247213[1].headnode03.cent.gla.ac.uk
(substate=50)
12/16/2023 13:08:52 S dequeuing from short, state COMPLETE

qdel advanced - arrays

If you want to delete an array job or individual tasks in an array you need to change
the jobid you pass to qdel.

Here is an example where we submit an array job as before – we can see it running
and we try to delete it with qdel 247214

-bash-3.2$ qsub arrayjob2.sh
247214[].headnode03.cent.gla.ac.uk

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247214[1].headnode03.c mjm4y short TestArray-1 17634 1 2 -- 01:30:00 R --
247214[2].headnode03.c mjm4y short TestArray-2 1174 1 2 -- 01:30:00 R --
247214[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 H --
247214[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --

-bash-3.2$ qdel 247214

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247214[1].headnode03.c mjm4y short TestArray-1 17634 1 2 -- 01:30:00 R --
247214[2].headnode03.c mjm4y short TestArray-2 1174 1 2 -- 01:30:00 R --
247214[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 H --
247214[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --

As you can see the arrayjob is still running – instead we need to pass qdel an option
which tells it that this is an array job – qdel 247214[]

-bash-3.2$ qdel 247214[]

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247214[1].headnode03.c mjm4y short TestArray-1 17634 1 2 -- 01:30:00 C 00:00:00
247214[2].headnode03.c mjm4y short TestArray-2 1174 1 2 -- 01:30:00 C 00:00:00
247214[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 C --
247214[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 C --

Here we see that all tasks in the array have been stopped.

However you may only want to stop one task in your array and let the others
continue, to do this we need to tell qdel which task we want to delete – so let’s submit
another arrayjob

-bash-3.2$ qsub arrayjob2.sh
247215[].headnode03.cent.gla.ac.uk

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247215[1].headnode03.c mjm4y short TestArray-1 17732 1 2 -- 01:30:00 R --
247215[2].headnode03.c mjm4y short TestArray-2 1271 1 2 -- 01:30:00 R --
247215[3].headnode03.c mjm4y short TestArray-3 -- 1 2 -- 01:30:00 H --
247215[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --

Now if we let qdel know which task to delete then it will only delete that task - qdel
247215[2]

-bash-3.2$ qdel 247215[2]

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247215[1].headnode03.c mjm4y short TestArray-1 17732 1 2 -- 01:30:00 R --
247215[2].headnode03.c mjm4y short TestArray-2 1271 1 2 -- 01:30:00 C 00:00:00
247215[3].headnode03.c mjm4y short TestArray-3 1367 1 2 -- 01:30:00 R --
247215[4].headnode03.c mjm4y short TestArray-4 -- 1 2 -- 01:30:00 H --

Notice that task two has finished and task three has started.

Finally you can use the –t option to list a selection of tasks to delete. Let us start with
an array of 12 tasks with 4 running

-bash-3.2$ qsub arrayjob4.sh
247230[].headnode03.cent.gla.ac.uk

After some time – note the first two tasks have competed – the next four are running
and 6 are held.

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247230[1].headnode03.c mjm4y short TestArray-1 23011 1 2 -- 01:30:00 C 00:00:00
247230[2].headnode03.c mjm4y short TestArray-2 6661 1 2 -- 01:30:00 C 00:00:00
247230[3].headnode03.c mjm4y short TestArray-3 20692 1 2 -- 01:30:00 R 00:00:00
247230[4].headnode03.c mjm4y short TestArray-4 31132 1 2 -- 01:30:00 R 00:00:00
247230[5].headnode03.c mjm4y short TestArray-5 23105 1 2 -- 01:30:00 R 00:00:00
247230[6].headnode03.c mjm4y short TestArray-6 6755 1 2 -- 01:30:00 R 00:00:00
247230[7].headnode03.c mjm4y short TestArray-7 -- 1 2 -- 01:30:00 H --
247230[8].headnode03.c mjm4y short TestArray-8 -- 1 2 -- 01:30:00 H --
247230[9].headnode03.c mjm4y short TestArray-9 -- 1 2 -- 01:30:00 H --
247230[10].headnode03. mjm4y short TestArray-10 -- 1 2 -- 01:30:00 H --
247230[11].headnode03. mjm4y short TestArray-11 -- 1 2 -- 01:30:00 H --
247230[12].headnode03. mjm4y short TestArray-12 -- 1 2 -- 01:30:00 H --

So if we decide that we want to kill a specific selection of the tasks we can do it like
this

-bash-3.2$ qdel -t 4,5,10-11 247230[]

-bash-3.2$ qstat -at -u mjm4y

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
247230[1].headnode03.c mjm4y short TestArray-1 23011 1 2 -- 01:30:00 C 00:00:00
247230[2].headnode03.c mjm4y short TestArray-2 6661 1 2 -- 01:30:00 C 00:00:00
247230[3].headnode03.c mjm4y short TestArray-3 20692 1 2 -- 01:30:00 R 00:00:00
247230[4].headnode03.c mjm4y short TestArray-4 31132 1 2 -- 01:30:00 C 00:00:00
247230[5].headnode03.c mjm4y short TestArray-5 23105 1 2 -- 01:30:00 C 00:00:00
247230[6].headnode03.c mjm4y short TestArray-6 6755 1 2 -- 01:30:00 R 00:00:00
247230[7].headnode03.c mjm4y short TestArray-7 23204 1 2 -- 01:30:00 R --
247230[8].headnode03.c mjm4y short TestArray-8 31231 1 2 -- 01:30:00 R --
247230[9].headnode03.c mjm4y short TestArray-9 -- 1 2 -- 01:30:00 H --
247230[10].headnode03. mjm4y short TestArray-10 -- 1 2 -- 01:30:00 C --
247230[11].headnode03. mjm4y short TestArray-11 -- 1 2 -- 01:30:00 C --
247230[12].headnode03. mjm4y short TestArray-12 -- 1 2 -- 01:30:00 H --

Note tasks 4,5,10 and 11 have completed but the others are still running or waiting to
run.

qsub – advanced part two

There is another qsub option you may find useful –W which is for additional
attributes. You can look at the qsub manual pages for a full list of attributes but I am
going to cover three here:- depend, stagein & stageout

depend

depend allows you to automate some of the decision you might take about the order
that you run your jobs or what to do after a job or group of jobs has finished. It lets
you decide to run jobs before, after or along with other jobs.

qsub –W depend=dependency_list

Where the dependency list can be one or more of a list of dependencies on other
jobs. There are 5 groups of dependencies:-

you want your job to run after another job or jobs;
before another job or jobs;
at the same time as another job or jobs;
after a job array;
before a job array

Here we submit a job after another job:-

qsub –W depend=after:12345 script1.sh

qsub –W depend=afterok:12345 script2.sh

qsub –W depend=afternotok:12345 script3.sh

qsub –W depend=afterany:12345 script4.sh

These mean submit a job and give it a dependency on job 12345, in the first case the
new job can start after job 12345 has started execution. In the second case the job
can start only after the successful completion of job 12345. In the third case the job
starts only if job 12345 fails. In the final case the job will start after job 12345 finishes,
with or without errors.

Here is an example in practice:-

Submit four jobs each writes to a different logfile – I also submitted a final job that
combines the four logfiles. I put a dependency on that job to only start after the
successful completion of the other four jobs

Contents of cleanup.sh

#! /bin/bash
cat /export/home/mjm4y/depend-job-test/*log >> /export/home/mjm4y/depend-job-test/combined.log

-bash-3.2$ qsub one.sh
246482.headnode03.cent.gla.ac.uk

-bash-3.2$ qsub two.sh
246483.headnode03.cent.gla.ac.uk

-bash-3.2$ qsub three.sh
246484.headnode03.cent.gla.ac.uk

-bash-3.2$ qsub four.sh
246485.headnode03.cent.gla.ac.uk

-bash-3.2$ qsub -W depend=afterok:246482:246483:246484:246485 cleanup.sh
246486.headnode03.cent.gla.ac.uk

-bash-3.2$ qstat -a

headnode03.cent.gla.ac.uk:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
----------------------- ----------- -------- ---------------- ------ ----- ------ ------ --------- - ---------
246482.headnode03.cent mjm4y short one.sh 1365 1 1 -- 01:00:00 R --
246483.headnode03.cent mjm4y short two.sh 9110 1 1 -- 01:00:00 R --
246484.headnode03.cent mjm4y short three.sh 6659 1 1 -- 01:00:00 R --
246485.headnode03.cent mjm4y short four.sh 24051 1 1 -- 01:00:00 R --
246486.headnode03.cent mjm4y short cleanup.sh -- 1 1 -- 01:00:00 H --

Notice the cleanup job is in the Held state – once the other four jobs successfully
complete the cleanup job will run.

You can also submit a job – but require subsequent jobs to run before it starts. When
you submit it you need to let Torque know there will be a dependency so you would
submit it like this:-

qsub –W depend=on:2 cleanup.sh

This says that there is a dependency on 2 subsequent jobs that need to run before
this job starts.

You then submit the subsequent jobs as follows (assume the job above is jobid
12345)

qsub –W depend=before:12345 one.sh

qsub –W depend=beforeok:12345 one.sh

qsub –W depend=beforenotok:12345 one.sh

qsub –W depend=beforeany:12345 one.sh

The options are the same as for the after dependencies, however in this case 2 jobs
much reach their dependency before the original job starts.

To run a group of jobs together you need to start the first with the synccount
dependency then start the others with the syncwith dependency

The fist job is started as follows

qsub –W depend=synccount:2 script1.sh

This requires another two jobs to be grouped with this one and then the three jobs
will start at the same time

qsub –W depend=syncwith:12345 script2.sh
qsub –W depend=syncwith:12345 script3.sh

The final two groups are about dependencies on arrays. The first is a group that start
after an array has started. Note [count] this is an optional attribute particular to arrays
and I will discuss this later.

qsub –W depend=afterstartarray:12345[][count] script.sh

qsub –W depend=afterokarray:12345[][count] script.sh

qsub –W depend=afternotokarray:12345[][count] script.sh

qsub –W depend=afteranyarray:12345[][count] script.sh

Let us look at this in practice. If we were to submit our arrayjob.sh as before in “qsub
advanced part one”

Then if we wanted to run our cleanup.sh job again we can run it with an array
dependency as follows.

qsub -W depend=afterokarray:12345[] cleanup.sh

This means that cleanup.sh will start after all tasks of array 12345 have successfully
completed. You can use the other three variants as before to start the job when the
all tasks in the array have started, not completed successfully, or just all completed –
with or without errors.

Now we will discuss the [count] option – this allows you to run a job after a set
number of the tasks of the job array have satisfied the condition. So if we wanted
cleanup.sh to run after at least two of the array job tasks have finished we would
submit it like this:-

 qsub -W depend=afterokarray:12345[][2] cleanup.sh

Finally we should be able to submit an array job that requires other jobs to run before
it starts with beforestartarray,beforeokarray etc. However I could not get it to work, I
tried many different combinations and no of them worked – I can get it to accept the
jobs but the job that depends on the later job never starts and remains in the Hold
state.

stagein
stageout

I am going to look at these two related options together. These options are for
copying a file to the execution node before your job starts (stagein) and copying a file
back after your job completes (stageout). They can be used independently as well as
together.

qsub –W stagein=localfile:remotefile
qsub –W stageout=localfile:remotefile

Local in this case means on the execution node.

Why might you want to do this when you have a shared filestore?

If you have a job that is greatly IO intensive (reads/writes to a file a lot) then you will
get MUCH better performance with a local file rather than a remotely accessed (NFS)
file.

The benefit must outweigh the overhead of copying the file(s).

Let us look at adding them to a batch script – The filesystem /tmp on each node is
95GB – this is shared with all users currently running jobs on that execution node.
Note the use of localhost here, this is a way of specifying the node your job is
actually running on.

#!/bin/bash

#PBS -l cput=01:30:00, walltime=02:00:00, nodes=1:ppn=2:centos7
#PBS –m abe
#PBS –M mjm4y@udcf.gla.ac.uk
#PBS –N TestFileStaging
#PBS –W stagein=/tmp/myinputfile@localhost:/path/to/input
#PBS –W stageout=/tmp/myoutputfile@localhost:/path/to/outputfile

/path/to/programme_to_run /tmp/myinputfile /tmp/myoutputfile

Warning:- Avoid generic names for your input and output files – like out.log or input.
If you do this you run the risk of choosing the same name as another user who may
be running jobs on the same execution node. I would suggest using your username
somewhere in the file – eg mjm4y-input.file or mjm4y-output.log.

When your job ends the stagein & stageout files are deleted from /tmp.

MPI

MPI is using multiple processors across multiple nodes, MPI stands for Message Passing
Interface. This is less of an issue now that we have nodes with 64 cores and 512GB RAM –
most jobs will be able to run on the one physical node and therefore not need to consider
message passing between nodes.

There is an important environment variable $PBS_NODEFILE which is a file containing the
nodes that your job has been assigned. You use this to pass the list of nodes to the mpi
programme.

I will explain the use of pbsdsh and mpirun.

pbsdsh is supplied as part of torque and so already knows what nodes your job has assigned. You can
use this to launch multiple copies of your programme. Eg pbsdsh script.sh will launch a copy of
script.sh on each processor you have been assigned, gathering the output and error files

Example 1

qsub parallel-simple.sh

parallel-simple.sh contains

#!/bin/sh
#PBS -l cput=55:30:00, walltime=100:00:00, nodes=2:ppn=2:centos7
#PBS –m abe
#PBS –M mjm4y@udcf.gla.ac.uk

/usr/local/bin/pbsdsh script.sh &

This will launch 4 copies of script.sh – 2 copies on each of the two nodes you have been assigned
It is upto you to write the code if you require them to communicate between the processes.

A more complicated example uses mpirun is shown next

Example 2

qsub parallel-complex.sh

parallel-complex.sh contains

#!/bin/sh
#PBS -l cput=55:30:00, walltime=100:00:00, nodes=2:ppn=16:centos7
#PBS –m abe
#PBS –M mjm4y@udcf.gla.ac.uk

module load openmpi
mpirun -machinefile $PBS_NODEFILE -np 32 $HOME/thread.sh &

We use mpirun to control the process between nodes. The environment variable
$PBS_NODEFILE contains a file with the list of nodes assigned to your job.
This job will then run on 16 processors on each of 2 nodes – the mpirun command will handle
message passing between the nodes.

If you are using an mpi aware programme you should find that it can communicate between
the processes on different nodes.

If you want to handle your own message passing then you need to be aware of the
$PBS_NODEFILE variable – this variable contains a list of the nodes you have been
allocated – a particular node will appear twice if you have been allocated both slots on a
node. To take a look at this try the following – qsub –I –l nodes=2:ppn=2. then in the shell you
are presented with type cat $PBS_NODEFILE – the output is 4 lines, each line is the
hostname of a node and each node is repeated twice (because you have asked for 2
processors on each node).

There is a temporary folder created on each node that you are using at /tmp/$PBS_JOBID
they are deleted when your job ends.

For more detailed instructions please check the MPI basic instructions manual, or contact us
if in doubt.

GPU Servers

The HPC has a couple of GPU servers that have been provided by The College of Science &
Engineering primarily for their researchers.

For those researchers with access the job needs to be submitted directly to the Queue rather
than to the generic routing queue as you would with normal jobs we do this with another qsub
option -q. Normally it is better to allow Torque/Maui to decide which queue is best for you
according to the resources you request – however routing to the gpu queue based on
resource requests is not currently working as expected as the full gpu options were not
compiled into torque when the HPC was put together. The following sections show how to
submit jobs to run on the GPU servers. You should use the ppn statement here as a request
for the number of GPU’s you need on the node – eg nodes=1:ppn=1 for one GPU or
nodes=1:ppn=2 for two GPU’s.

Qsub options

-q

This allows you to submit a job directly to a particular queue. In this case we use it to submit
directly to the gpu queue. You follow the –q with the name of the queue you want your job to
run on.

 -q queue_name

Here are examples at the command line

qsub –q gpu -l nodes=1:ppn=1,walltime=24:00:00 /path/to/programme_to_run

or in a wrapper script

#!/bin/bash
#PBS -l nodes=1:ppn=1,walltime=24:00:00
#PBS -q gpu

/path/to/programme_to_run

Other considerations

The GPU servers have multiple GPU’s in them – you have to ensure that your job only uses
the gpu you have been assigned and not any of the others. These may well have other jobs
running on them and so if you ran your job on the same GPU you would not get to use the full
potential of the GPU and would possibly adversely affect the other researcher’s job. Luckily
there is an environment variable you can use to control this called CUDA_VISIBLE_DEVICES
– this is a comma separated list of the indices of the GPU’s you can use eg 2,0 – in your
script you need to set this with indices of the GPU((s) you have been allocated. When your
job starts on one of the GPU servers Torque creates a file with this information and you need
to use this to set the environment variable. You just need to copy this information to the
CUDA_VISIBLE_DEVICES environment variable.

In the bash shell you would do this with the following line in your script

export CUDA_VISIBLE_DEVICES=`cat /tmp/$PBS_JOBID/gpu`

You can put this in either your wrapper script or at the start of your own script – here is the
earlier example expanded to include this.

#!/bin/bash
#PBS -l nodes=1:ppn=1,walltime=24:00:00
#PBS -q gpu

export CUDA_VISIBLE_DEVICES=`cat /tmp/$PBS_JOBID/gpu`

/path/to/programme_to_run

Gotcha’s & what to do about them

You check a program on the headnode & it works – you submit it to the cluster & it
fails

The headnode has many more packages on it than the compute nodes, I would advise
checking a program by running qsub –I and running the program within the shell you are
given.

You do not get the error & output files written to your filespace

Check that you launched qsub from a directory you have write permission to. Check that you
have properly done the ssh setup steps.

You do not get the mail messages sent to you when jobs begin and end

Have you passed the –m option? Do you have mail forwarding setup or pass the –M option
to qsub

Your MPI job fails, unable to talk to other nodes

Some mpi aware code communicates using rsh – the HPC cluster only uses ssh. You will
probably have to pass an environment variable to your programme of the sort –

export RSH_COMMAND=/usr/bin/ssh

for castep the command is
export P4_RSHCOMMAND=/usr/bin/ssh

some other programs assume one mpi implementation or another for instance cct & par
assume that you are using lamd but you can pass an option at runtime – no-lamd which turns
off this assumption.

Path problems

I would recommend using absolute paths at all time to avoid working directory problems – it
appears that the working directory in a script does not always change when you issue a cd
command.

Memory problems

You can sometimes get memory problems if your job needs a lot of memory. Our compute
nodes currently have between 4GB of RAM (on some 4 processor nodes) upto 512GB of
RAM on our 64 processor nodes – There is a property on each of the nodes that described
the amount of RAM available per processing core, it is one of:-

twogpc – 2GB per processing core
eightgpc – 8GB per processing core
sixteengpc – 16GB per processing core

You can use this in the –l options when you request resources for your job (see the qsub
notes for details of this)

Array Job problems - (Bad Job Array Request)

The range of valid array id numbers is 0 to 99999. You have to submit your array with id’s
within this range.

Array Job problems - (Bad Job Array Request MSG=Requested array size too large,
limit is 5000)

For performance and reliability reasons there is a maximum size of array allowed on the
cluster at the time of writing this is 5000, although this may well change – the current number
is included in the error message. The solution is to submit your job in batches of that size or
smaller – you can use discrete ranges as long as they are within the 0-99999 range

i.e.

qsub –t 0-4999 script.sh
qsub –t 5000-9999 script.sh
qsub –t 10000-14999 script.sh etc

You should write your submission script in such a way as to only submit a batch as the earlier
one finishes. (e.g package Raccoon 2 handles much of this, although it will try to submit a job
with array ids greater than 99999).

R – Installing New Packages

If you try to install new packages in R it will normally try to connect to the internet to download
it. The cluster nodes are on private address space and so cannot reliably connect out with
campus.

Instructions on compiling R packages from source are available under the Manuals section on
R-Project website, contact us if in doubt.

https://autodock.scripps.edu/resources/raccoon2/
https://cran.r-project.org/

	Headline Specification
	The hardware is a mix of:

