Data Programming in Python (ODL) STATS5082
- Academic Session: 2024-25
- School: School of Mathematics and Statistics
- Credits: 10
- Level: Level 5 (SCQF level 11)
- Typically Offered: Semester 1
- Available to Visiting Students: No
- Taught Wholly by Distance Learning: Yes
- Collaborative Online International Learning: No
Short Description
The course introduces students to object-oriented programming, the programming language Python and its use for data programming and analytics.
Timetable
The teaching material mostly consists of asynchronous content.
Requirements of Entry
The course is only available to online-distance learning students on the PGCert/PGDip/MSc in Data Analytics and Data Analytics for Government. It is also available to on-campus students in the 5th year of the MSci in Statistics.
Excluded Courses
-/-
Co-requisites
-/-
Assessment
100% Continuous Assessment
Full details are provided in the programme handbook.
Course Aims
The aims of this course are:
■ to introduce students to object-oriented programming and Python as a generic programming language;
■ to train students in Python libraries relevant to data analytics such as scikit-learn, NumPy/SciPy and pandas
Intended Learning Outcomes of Course
By the end of this course students will be able to:
■ design and implement functions and classes in Python;
■ make efficient use of the data structures built into Python, such as lists;
■ describe and exploit features of object-oriented design such as polymorphism and inheritance
■ implement data management tasks in Python;
■ implement data-analytic tasks in Python using external libraries such as scikit-learn, NumPy/SciPy and pandas
Minimum Requirement for Award of Credits
Students must submit at least 75% by weight of the components (including examinations) of the course's summative assessment.