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Abstract

People repeatedly demand travel, using available vehicles scattered around space. What can

justify vehicle withholding (i.e. preventing others from using it, for own future use) from

the social welfare perspective? This paper investigates heterogeneity in the potential cost of

search for alternative vehicles as such justification. It is shown that travellers whose search

cost is substantially higher than that of others (e.g. limited-mobility people) can optimally

withhold a vehicle. The heterogeneity of search costs should be sufficiently strong, e.g. a

uniform distribution is not variable enough to justify withholding by anyone. In an example

calibrated for car use in London, it is shown that at most 39% of car users should withhold

their vehicles under the most extreme modelling assumptions, while all others should share.
Keywords: Vehicle sharing, Transportation demand, Spatial search frictions

JEL codes: D61, L92, O18, R40

1. Introduction

Vehicle sharing is a technology that allows the same vehicle to be used by different

people at different points in time, reducing the number of vehicles that are needed to meet

transportation demand. Today, shared vehicles (SV) remain a fringe transportation option

and serve only a fraction of travel demand, while exclusive-use vehicles continue to be viewed

by most people as the default option. This paper turns the comparison on its head and

1The author declares no conflict of interest. Email: r.zakharenko@gmail.com. Web: www.rzak.ru.
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assumes vehicle sharing is the default option, while vehicle withholding is an alternative

option. Here withholding is defined as prevention of other people from legally using the

vehicle, for the purpose of own future use. This paper asks the question: what can justify,

from the social welfare perspective, such withholding by some people?

Historically, exclusive nature of vehicle use was driven by lack of technology for effective

sharing. For example although carsharing was first attempted in 1948 (Shaheen et al.,

2001), it has reached commercial success only in the 21st century, after new communication

technologies allowed to remotely grant control of the vehicle to a specific individual. Today,

the technological challenge of vehicle sharing is successfully solved with minimal additional

equipment required for the vehicle.

Another potential motivation for vehicle exclusive access is the moral hazard problem:

users may show more care about the vehicle if they expect they will continue to use the same

vehicle in the future. Modern carsharing companies, however, are increasingly able to track

vehicle movements and detect the driving style, reducing the moral hazard problem. The

rest of this paper does not consider this problem.

The rest of the paper is focused on analysing whether vehicle withholding by some people

travelling (travellers henceforth) can be justified by heterogeneity of such people. The paper

is focused on one dimension of such heterogeneity, while other potential dimensions are

mentioned in the conclusion.

While vehicle sharing allows to meet the same travel demand with fewer vehicles, it also

creates spatial search frictions. As available vehicles are scattered around space, they have

to be searched (usually via a mobile app) and then the traveller normally has to walk to the

vehicle of choice.

This paper explores whether traveller heterogeneity in walking costs (i.e. in costs of

physical effort or in the opportunity cost of time) can justify vehicle withholding by some

travellers. The answer is yes, but only if the walking cost heterogeneity is sufficiently high,
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and only for a minority of travellers with the highest walking cost. In particular, it is shown

that a uniform distribution of walking costs is not variable enough and does not justify

withholding by anyone. In an automobile travel demand example calibrated for the city

of London, the maximum share of travellers who should optimally withhold their vehicles

is 39% in the most adverse scenario, and is much lower than that under more plausible

scenarios. All remaining travellers should optimally share automobiles. The result is proven

for arbitrary distribution of walking costs with a calibrated upper bound.

It should be emphasised that it is not the absolute level of walking cost that matters for

optimal withholding, but its comparison with that of other travellers. When the walking

cost is homogenous, regardless of its level, the first-come-first-serve basis for vehicle use

maximises welfare, so withholding is not justified. Withholding by traveler A can be optimal

only if other travellers typically have much lower walking costs, so the cost of withholding

(i.e. increased search cost for other travellers, and longer period of inactivity of the withheld

vehicle) is below its benefit (allowing traveller A to avoid walking in the future).

This paper contributes to my own stream of literature on various economic-theoretical

aspects of vehicle sharing. In Zakharenko (2023a), I develop a spatially explicit model of

transportation demand, derive a formula for location-specific pricing for SV services, and

predict how this formula can improve the existing practice of carsharing. In Zakharenko

(2023b), I provide a theoretical argument for free municipal parking for shared vehicles, as a

method to achieve a “big push” from private to shared mobility. A number of papers model

search frictions in taxi or ridehailing, e.g. Frechette et al. (2019) and Buchholz (2022), or

in a wider context of transportation demand (Brancaccio et al., 2023). All of these models

however assume that the agents demanding travel are short-lived, i.e. will not need trans-

portation again, rendering vehicle withholding irrelevant. Outside Economics, Nansubuga

and Kowalkowski (2021) review literature analysing the decision to adopt carsharing, usually

based on consumer surveys rather than theory.
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Figure 1: Illustration of a typical trip. Reproduced from Zakharenko (2023b). Vehicle image courtesy of
Macrovector/Freepik.

2. The model

2.1. Definitions

The model is based on Zakharenko (2023b) with some modifications. There is a contin-

uum of individuals who live in infinite continuous time and travel between two infinite linear

streets repeatedly, using a vehicle. The precise location of the next trip origin is the same

as the location of the previous destination. All vehicles are (potentially) shared and are

free-floating, i.e. can be released for the use by others at any time and location. A spatial

visualisation of the model is illustrated on Figure 1. At the end of each trip, travellers decide

whether to release the vehicle or withhold it for future use.

Traveller departure for the next trip is a Poisson process that cannot be planned in

advance, such that the expected duration of stay between trips is τ . The mass of travelers

who depart, per hour per km of linear street space, is exogenously given by L. The exact

location at the destination street is also random and uniformly distributed across space,

which means that the distribution of vehicles along each street is also uniform. Given these

assumptions, the total amount of vehicle-kilometers travelled, as well as the cost of such
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Notation Description Units
λ fraction of travellers sharing vehicles
µ density of vacant vehicles veh∗/ kmS∗∗

τ mean duration of stay at destination h
ϕ vehicle standing cost $/h/veh
C Social cost of transportation $/h/kmS
I Individual probability of vehicle withholding
L travel demand per∗∗∗/ h/ kmS
q Rate of SV reservation by walkers 1/h
w cost of walking $/h

Table 1: Notational glossary. ∗per vehicle or number of vehicles; ∗∗km of street space; ∗∗∗ number of persons.

travel, are an exogenous part of social transportation cost and are not modelled explicitly.

The social cost of parked vehicles is ϕ per hour; this includes the vehicle standing costs

and the social cost of parking.2 Parked vehicles can be in one of the three states: withheld,

vacant, and reserved, explained below.

When a traveller chooses to withhold a vehicle at the end of the previous trip, the vehicle

remains in this state until the next trip, that is, for τ units of time in expectation. When

the vehicle is released, it becomes vacant and available for anyone. The endogenous density

of vacant vehicles is denoted by µ.

Immediately before the next trip, travellers who previously released their vehicles search

for a vehicle again. With positive probability, previously used vehicle is still available at the

same location, so the traveller can use it with zero walking cost involved. With the remaining

probability, the previous vehicle is no longer available, and another one has to be found.

Almost surely an alternative vehicle is some walking distance away; then such travellers are

denoted as walkers. In social optimum, walkers will always use the nearest available vehicle,

which is 1
2µ

units of time (and also units of space, assuming unitary walking speed) away in

2In previous variants of this model, Zakharenko (2023a) and Zakharenko (2023b), these two elements
were modelled separately.
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expectation.3 The vehicle has to be reserved while the traveller is walking towards it. The

incurred walking cost w ≥ 0 per hour is heterogenous with c.d.f. F (·) and p.d.f. f(·).

2.2. Individual release decision

To keep the model tractable, I assume that the individual release decision can depend only

on the time-invariant individual walking cost w. It cannot depend on transitory parameters

such as availability of other vehicles at the time of release. It cannot be revised before the

departure for the next trip. Travellers without a withheld vehicle, when searching for vacant

vehicles, know only vehicle locations and cannot base their decisions on past history of these

vehicles. These assumptions about information (un)available to travellers are consistent with

the existing practice of SV operations.

Given above assumptions, denote by I(w) the endogenous probability that a traveller

with walking cost w chooses to withhold their vehicle at the end of their trip. Denote by

q the endogenous Poisson rate of vacant vehicle booking by travellers who had to walk, i.e.

who were unable to use their previous vehicle.

Unused (parked) vehicles incur a social cost ϕ per hour and belong to one of three

categories:

• Withheld. With arrival rate L and expected parking duration τ , the density of withheld

vehicles per km of street space is Lτ
∫
w
I(w)f(w)dw.

• Vacant. The density is denoted by µ. The flow of travellers that arrive and release

their vehicles is L
∫
w
(1 − I(w))f(w)dw. For every released vehicle, the rate of their

booking is 1
τ

by the same traveller and q by others, hence the expected duration of

3The coefficient 2 here is because vehicles can be searched in both directions along the street.
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vacancy is 1
1
τ
+q

= τ
1+qτ

. The density of vacant vehicles then satisfies

µ =
Lτ

1 + qτ

∫
w

(1− I(w))f(w)dw. (1)

• Reserved by walkers. The flow of travellers who originate their trip without a previously

withheld vehicle is L
∫
w
(1− I(w))f(w)dw. For every such traveller who stayed t hours

since the previous trip, the probability that the previous vehicle is no longer available is

1− exp(−qt). Since t is random and exponentially distributed with p.d.f. 1
τ
exp

(
− t

τ

)
,

the ex-ante probability of having to search for another vehicle is

1

τ

∫ ∞

t=0

(1− exp(−qt)) exp

(
− t

τ

)
dt =

qτ

1 + qτ
.

As outlined in Section 2.1, the expected walking time is 1
2µ

. Given all of the above,

the density of reserved vehicles is L
2µ

qτ
1+qτ

∫
w
(1 − I(w))f(w)dw, and the walking cost

incurred by those who reserved them is L
2µ

qτ
1+qτ

∫
w
(1− I(w))wf(w)dw per hour.

Given the above, we can formulate the social cost of all unused (parked) vehicles (including

the associated walking cost) as follows:

C = ϕ

(
Lτ

∫
w

I(w)f(w)dw + µ

)
+

L

2µ

qτ

1 + qτ

∫
w

(1− I(w))(w + ϕ)f(w)dw. (2)

The social cost of transportation also includes the cost of vehicles in transit. However, given

the assumptions of the model, this part of social cost does not depend on any endogenous

parameters in the model and is therefore omitted from further analysis.

Denote by quasi-shared state the environment saturated with vehicles, so that a released

vehicle cannot be picked up by anyone other than last customer: q = 0. Then, from (1),

µ = Lτ
∫
w
(1 − I(w))f(w)dw and, from (2), the social cost is a constant at C = ϕτL.
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Intuitively, with one vehicle per traveller, it does not matter whether a vehicle is withheld

or released, as it will always be used by the same traveller.

The truly shared state, in contrast, implies fewer vehicles than travellers and therefore

q > 0. Then, from (1), we can show that the term involving q in (2) is equal to

qτ

1 + qτ
= 1− µ

τL
∫
w
(1− I(w))f(w)dw

> 0, (3)

and (2) can be solved for q as

C = ϕ

(
Lτ

∫
w

I(w)f(w)dw + µ

)
+

L

2µ

∫
w

(1− I(w))(w + ϕ)f(w)dw − ϕ+ w̄(I(·))
2τ

, (4)

where

w̄(I(·)) =
∫
w
(1− I(w))wf(w)dw∫
w
(1− I(w))f(w)dw

(5)

is the mean walking cost among travellers releasing their vehicles.

The socially optimal withholding decision I(w) is found by comparing to zero the follow-

ing:
dC

dI(w)
= Lf(w)dw

[
−w + ϕ

2µ
+

w − w̄(I(·))
2Lτ

∫
w′(1− I(w′))f(w′)dw′ + τϕ

]
. (6)

It is optimal to withhold (I(w) = 1) if (6) is negative, and to release (I(w) = 0) if it is

positive. How does this decision depend on the individual walking cost w? Differentiation

of the term in square brackets in (6) w.r.t. w yields

− 1

2µ
+

1

2τL
∫
w′(1− I(w′))f(w′)dw′ ,

which is negative by (3). This proves the intuitive result that a higher walking cost w

decreases dC
dI(w)

, making it negative for sufficiently large w.
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2.3. Social optimum

Given the latter conclusion, there exists ŵ ∈ [0,∞) such that all travellers with w < ŵ

release their vehicle and those with w > ŵ withhold it.4 The rest of the paper operates

with this threshold ŵ rather than individual decisions I(w) to save on notation. Denote by

λ = F (ŵ) the endogenous fraction of traveller population who release their vehicle after each

trip. The mean walking cost (5) is redefined as:

w̄(λ) =
1

λ

∫ F−1(λ)

0

wf(w)dw. (7)

The social transportation cost function (4) is redefined as

C(λ, µ) = max

[
λL

2µ
− 1

2τ
, 0

]
(ϕ+ w̄(λ)) + µϕ+ (1− λ)τϕL → min

λ,µ
(8)

The condition for a truly shared state (3) is redefined as

µ < λτL. (9)

The first-order conditions of local optimum are:

∂C

∂λ
=

L

2µ
(ϕ+ ŵ)− 1

2τ

ŵ − w̄

λ
− τϕL

 = 0, λ < 1,

≤ 0, λ = 1,
(10)

∂C

∂µ
= − λL

2µ2
(ϕ+ w̄) + ϕ = 0. (11)

4Those with w = ŵ are indifferent and may play a mixed strategy, which will affect aggregate outcomes
only if ŵ is a mass point of the walking cost distribution.
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The elements of the Hessian H are

∂2C

∂λ2
=

1

2

[
L

µ
− 1

λτ

]
1

f(ŵ)
+

ŵ − w̄

λ2τ
> 0, (12)

∂2C

∂λdµ
= − L

2µ2
(ϕ+ ŵ) < 0, (13)

∂2C

∂µ2
=

λL

µ3
(ϕ+ w̄) > 0. (14)

Because the diagonal elements of the Hessian are positive, the curve in the {µ, λ} space

defined by (10) held with equality is optimal (cost-minimising) λ for given µ and is labeled

the demand curve, λD(µ). Likewise, the curve defined by (11) is optimal µ for a given λ and

is labeled the supply curve, λS(µ). The intersection of demand and supply is an interior local

optimum if the Hessian is positive-definite, and is a saddle point otherwise.
Lemma 1. Both demand and supply are non-negatively sloped. Their intersection is a local
minimum if the demand is flatter (with respect to µ) than supply, and is a saddle point
otherwise.

Proof. From the implicit function theorem, dλD

dµ
= −∂2C\∂λ∂µ

∂2C\∂λ2 . Likewise, the slope of

the supply curve is dλS

dµ
= − ∂2C\∂µ2

∂2C\∂λ∂µ . Both are positive due properties of the Hessian.

Multiplying both ratios by positive quantity − ∂2C
∂λdµ

∂2C
∂λ2 , we conclude that dλD

dµ
< dλS

dµ
iff(

∂2C
∂λdµ

)2

< ∂2C
∂λ2

∂2C
∂µ2 , i.e. the Hessian is positive-definite and the intersection point is a local

minimum. The reverse inequality dλD

dµ
> dλS

dµ
implies the Hessian is negative-definite.

Zakharenko (2023b) studies a special case of the above model with homogenous waking

cost w. In the notation of the current paper, homogenous w means ŵ = w̄ = w, meaning

that the demand curve (10) becomes L
2µ
(ϕ + w) − τϕL

 = 0, λ < 1,

≤ 0, λ = 1.
In other words, the

demand curve is vertical (λD takes any value) at µ = ϕ+w
2τϕ

, while λD(µ) = 1, ∀µ > ϕ+w
2τϕ

.5

The fully shared local optimum is where λ = 1, while µ is defined by the supply curve.

5This result is repeated in formula (7) in Zakharenko (2023b), after setting to zero the parameters not
introduced in the current paper.
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2.4. Quasi-shared critical points

What is the relationship between the quasi-shared curve µ = λτL, demand, and supply

curves? By inserting the latter equation for µ into (10,11), we find that the demand and

supply curves intersect the quasi-shared line at the same point(s) given by

ϕ+ w̄(λ) = 2λτ 2ϕL. (15)

In other words, the equations λD(λτL) = λ and λS(λτL) = λ have the same solution(s),

if any. Because the left-hand side of (15) is strictly positive, such point(s), if they exist,

correspond to strictly positive values of λ and µ.

Furthermore, the determinant of the Hessian at such points is given by

1

λ4τ 4L2

[
(ŵ − w̄)(ϕ+ w̄)− 1

4
(ϕ+ ŵ)2

]
.

This a non-positive quantity, and is strictly negative as long as w̄ ̸= 1
2
(ŵ − ϕ). Thus, any

quasi-shared critical point is a saddle point of C(λ, µ).

2.5. Truly shared critical points

This section studies interior (λ < 1) Truly Shared (satisfying (9)) Critical Points, or

TSCP. First, solve (11) for w̄ as follows: w̄ = 2µ2ϕ
λL

− ϕ. Next, insert this solution into (10)

(for interior λ), to obtain

L

2µ
(ϕ+ ŵ)

(
1− µ

λτL

)
− ϕτL

(
1− µ2

λ2τ 2L2

)
= 0.

Next, divide both sides by term 1− µ
λτL

(which is positive due to (9)):

L

2µ
(ϕ+ ŵ)− τϕL

(
1 +

µ

λτL

)
= 0.
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Given the latter expression, we can replace the term L
2µ
(ϕ + ŵ) in (10) (for interior λ) by

τϕL
(
1 + µ

λτL

)
= τϕL+ µϕ

λ
, to arrive at the following property of a TSCP:

2µτϕ = ŵ − w̄. (16)

By solving (16) for µ and inserting into (11), we arrive at a univariate equation as necessary

condition of a TSCP:

2λτ 2ϕ(ϕ+ w̄(λ))L = (ŵ(λ)− w̄(λ))2. (17)

Furthermore, (9) and (16) jointly imply ŵ − w̄ < 2λτ 2ϕL, which together with (17) implies

ŵ − w̄ > w̄ + ϕ, or

ŵ − 2w̄ > ϕ, (18)

as a second necessary condition of a TSCP. (17) and (18) are jointly sufficient for a TSCP.

Note that (18) is quite restrictive and requires a sufficiently large variation in walking

costs w. For example, any uniform distribution with a positive support does not satisfy this

property, as ŵ − 2w̄ ≤ 0 (with equality if the lower bound is zero, and inequality if it is

positive). This means that a uniform distribution of walking costs is not variable enough to

justify withholding a vehicle by anyone.

Figure 2 visualises the social cost of transportation and optimal λ and µ for the cases

where everyone has the same walking cost (left panel) and for a triangular distribution of

walking cost with linearly decreasing density f(·) (right panel).

3. Maximum withholding

This section plays devil’s advocate to construct a social optimum that maximises the

share of travelers who should withhold their vehicle. Note that in a quasi-shared state, the

number of vehicles matches the number of travellers, meaning all of them are indifferent

12



Figure 2: Examples of social cost of transportation as function of µ and λ.
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between withholding and not (because the last used vehicle will remain available for future

use anyway). This section focuses on cases where withholding is strictly preferred for some

travelers, which is only possible when some vehicles are truly shared. The objective of this

section is therefore to characterise the lowest possible λ in a truly shared global minimum

of the social cost function (8).

With unbounded support of walking cost w, one can construct an example with van-

ishingly small fraction λ of travelers sharing in the social optimum. It is quite plausible to

assume however that there exists an upper bound on the walking cost, because travelers can

use taxi or other means of transportation to reach the shared vehicle. Some SV operators in

Moscow, for example, connect their customers to a taxi service to do so, helping to reduce

the transaction costs of finding transportation to their SV. We will therefore assume an up-

per bound of the walking cost, denoted wH . Playing devil’s advocate again, we assume the

lower bound of the distribution is zero, as large variance in w is essential for socially optimal

vehicle withholding. Intuitively, some people may walk certain distance per day anyway, so

for them there is no opportunity cost of walking towards an SV.

3.1. Binomial distribution

To maximise the chance that some pair {λL, µ} satisfying (9) and λL < 1 is a global min-

imum of social cost (8), one wants to minimise w̄(λL) in (8). That is equivalent to assuming

that fraction λL of travelers have the lowest possible walking cost of zero. Furthermore, we

also want the social cost to be as high as possible at all alternative local minima with λ > λL.

For that, we need to maximise w̄(λ), λ > λL, by assuming that the remaining fraction 1−λL

of travelers have the highest possible walking cost wH . Such binary distribution maximises

the fraction of travelers who can withhold their vehicle in the social optimum.

The demand curve for such binary distribution is as follows.

• For λ < λL, we have that ŵ = w̄ = 0; the demand curve (10) is vertical at µ = 1
2τ

.
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For candidate social optimum at λL to be truly shared (i.e. for (9) to hold at λL), the

following must be true:

λL >
1

2τ 2L
. (19)

• At λ = λL, ŵ increases from zero to wH , while w̄ remains at zero. The demand curve

is horizontal, with µ ranging from 1
2τ

to µD
1 ≡ λLτL(ϕ+wH)

wH+2λLτ2ϕL
. This whole segment is truly

shared, as long as (19) is true.

• For λ > λL, ŵ = wH and w̄ =
(
1− λL

λ

)
wH ; the demand curve takes form

λD(µ)
2 =


λLµwH

τL(ϕ+wH−2µτϕ)
, µ ∈

[
µD
1 , µ

D
2

)
;

1, µ > µD
2 ,

(20)

where µD
2 ≡ τL(ϕ+wH)

λLwH+2τ2ϕL
.

Using the above expressions for w̄(λ), we can also find the supply curve (11):

λS(µ) =


2µ2

L
, µ ≤ µS

1 ≡
√

1
2
λLL;

2µ2ϕ
L(ϕ+wH)

+ λLwH

ϕ+wH
, µ > µS

1 .
(21)

Figure 3 illustrates these findings.

3.2. Lower optimum

This section investigates properties of a local optimum where part of travellers withhold

their vehicles, which we denote as a lower optimum.

For λL to be indeed a locally optimal λ, it is necessary that the demand and supply

curves intersect at λL; from (21), such intersection must occur at µ equal to µS
1 . Since the

demand curve has a horizontal segment at λL, the supply curve should cross through that

segment: 1
2τ

< µS
1 < µD

1 . The first inequality 1
2τ

< µS
1 follows from (19), while the second

15



Figure 3: Typical local optima of social welfare under a binomial distribution of walking costs
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inequality µS
1 < µD

1 requires that

wH >
√

2λLLϕτ (22)

as a necessary condition of local optimum existence. Note that the right-hand side of (22)

is greater than ϕ by (19): vehicle withholding is not optimal for anyone when the maximum

walking cost wH is lower or equal than the vehicle cost ϕ.

If the above conditions are met, the point {λL, µ
S
1 } is indeed a local optimum, by Lemma

1 and by the fact that demand is horizontal while supply is upward-sloping with respect to

µ.

Next, we investigate other local optima at higher values of λ, and specify conditions

under which the point {λL, µ
S
1 } is the global optimum.

Proposition 1. Any combination {λ, µ} for λ ∈ (λL, 1) cannot be a local minimum of (8).

Proof. Since a local interior minimum is a TSCP, it must satisfy conditions (16) and (18).

For the bilateral distribution of walking costs studied in the current section, for λ > λL,

these two conditions are

2µτϕ =
λL

λ
wH , (23)(

2
λL

λ
− 1

)
wH > ϕ. (24)

Because the relationship between λ and µ in (23) is negative, while in both demand (20)

and supply (21) such relationship is positive, all these conditions can be simultaneously met

in at most one point satisfying λ ∈ (λL, 1). We will refer to this as the “candidate point”.

Next, we calculate the Hessian and its determinant at the candidate point. Due to atomic

distribution of the walking cost, f(ŵ) = f(wH) = ∞ in (12) for λ ∈ (λL, 1), hence (12,13,14)
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can be rewritten as

∂2C

∂λ2
=

λLwH

λ3τ
,

∂2C

∂λdµ
= − L

2µ2
(ϕ+ wH),

∂2C

∂µ2
=

λL

µ3

(
ϕ+ wH − λL

λ
wH

)
.

The determinant of the Hessian at the candidate point is then equal to

detH =
λLwH

λ3µ3τ
(λL(ϕ+ wH)− λLLwH)−

(
L

2µ2
(ϕ+ wH)

)2

=︸︷︷︸
(21) forµ>µS

1

2λLwHϕ

λ3µτ
−

(
L

2µ2
(ϕ+ wH)

)2

=︸︷︷︸
(23)

(
2ϕ

λ

)2

−
(

L

2µ2
(ϕ+ wH)

)2

.

The sign of detH is therefore the same as the sign of

2ϕ

λ
− L

2µ2
(ϕ+ wH) =︸︷︷︸

(21) forµ>µS
1

2ϕ

λ
− ϕ

λ− λLwH

ϕ+wH

<︸︷︷︸
(24)

2ϕ

λ
− ϕ

λ− 1
2
λ
= 0.

Thus, the determinant of the Hessian at the candidate point is negative, meaning that such

point, if it exists, is a saddle point rather than a local minimum of social cost.

3.3. The global optimum and maximum withholding

The only alternative local optimum is therefore a fully shared one (with no one with-

holding vehicles), where λ = 1 and µ = µS
2 that solves λS(µ

S
2 ) = 1, which we refer to as the

upper optimum. Then, any withholding can exist in global social optimum if and only if the

local optimum defined in section 3.2 delivers a lower social transportation cost than that of
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a fully shared optimum:

C(λL, µ
S
1 ) ≤ C(1, µS

2 ). (25)

The aim of this section is to find the lowest λL that satisfies (25), which in turn ensures that

the maximal fraction 1− λL of travellers are withholding their vehicles.

The value of minimal λL depends on exogenous model parameters L and τ , among others.

Both of these positively affect the demand for shared mobility: a higher demand density L

means there are more people who can share, while a higher duration of stay between trips τ

increases the cost of withholding. Exposition of results that follow can be simplified and made

more intuitive by replacing these two parameters by new notation. Specifically, denote by

sharers the fraction λL of travellers actually sharing vehicles in the lower optimum. Denote

by n the socially optimal customer-to-vehicle ratio among the sharers; it is defined as ratio

of λLLτ (the density of vehicles withheld by the sharers, if they chose to do so) to µS
1 (the

actual density of vehicles released by sharers), nµS
1 ≡ λLLτ. By comparing the latter against

the definition of µS
1 in (21), we can backtrack the demand density L that results in that

specific value of n, and also find the socially optimal µ, as follows: µS
1 = n

2τ
and L = n2

2λLτ2
.

By substituting the latter into (19) and (22), these constraints can be rewritten as n > 1 and

wH > nϕ, respectively, as necessary conditions of existence of a local optimum with vehicle

sharing by some travellers and withholding by others. The two inequalities impose bounds

on the traveller-to-vehicle ratio: n ∈
(
1, wH

ϕ

)
. Outside of these bounds, n = 1 implies quasi-

rather than true sharing, while n ≥ wH

ϕ
means high enough demand density so that no vehicle

withholding can be optimal.

Next, we can calculate the social transportation cost at the designated global optimum,

i.e. at the lower optimum, as follows (cf.(8), recalling that w̄(λL) = 0):

C0(λL, n) = C(λL, µ
S
1 ) =

1

2

[
λLL

µS
1

− 1

τ

]
ϕ+ µS

1ϕ+ (1− λL)τϕL =
ϕ

τ

(
n− 1

2
+

1− λL

λL

n2

2

)
.

(26)
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The social transportation cost at the competing upper optimum is (noting that µS
2 =

n
2τ

√
ϕ+wH−λLwH

λLϕ
and recalling that w̄(1) = (1− λL)wH)

C1(λL, n) = C(1, µS
2 ) =

1

2

[
L

µS
2

− 1

τ

]
(ϕ+ (1− λL)wH) + µS

2ϕ (27)

=
n

τ

√
ϕ

λL

(ϕ+ (1− λL)wH)−
ϕ+ (1− λL)wH

2τ
. (28)

Finally, we need to find the minimal λL that satisfies (cf.(25))

C0(λL, n) ≤ C1(λL, n). (29)

Denote such minimal λL by λM . Note that C0(1, n) = C1(1, n), by construction. Also note

that, as λL → 0, λLC0(λL, n) → ϕn2

2τ
while λLC1(λL, n) → 0, meaning that (29) is violated for

sufficiently small λL, and λM is strictly positive. We also have that C0

(
ϕ
wH

, 1
)
= C1

(
ϕ
wH

, 1
)

.

Proposition 2. The function λM(n) is implicitly defined by

n =

√
λ
(
1 +

√
λ
)
wH/ϕ√

1 + (1− λ)wH/ϕ+ 1
, (30)

and is monotonically increasing from λM(1) = ϕ
wH

to λM(wH/ϕ) = 1.

Monotonicity and boundary conditions are straightforward to verify from (30). Appendix

Appendix A proves that this function is indeed λM(·). Figure 4 compares C0(λL, n) and

C1(λL, n) and visualises the function λM(n).

3.4. Calibration

To get some sense of the magnitude of λM , this section conducts its crude calibration for

the case of London.

First, I calibrate the maximum “walking cost” wH , on the assumption that travellers

with any higher walking cost travel to an SV of their choice by taxi. Calibration is made
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Figure 4: Comparison of C0(λL, n) and C1(λL, n)
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on a further assumption that the nearest SV is 2km away, which costs £7.6 to travel by

taxi according to London “taxi tariff 1”6 Assuming further that the trip takes 12min (5min

wait for taxi and 7min ride), with traveller’s maximal value of time of £1/min, the total

cost of a search session is 12+7.6+12ϕ=£19.6+12ϕ. The last element here is the cost of SV

reservation during the 12min during the travel time towards it.

Because wH is defined as the maximal value of walking time, we calculate it for a traveller

who walks 2km to an SV and incurs a total cost of £19.6+12ϕ in the process. Such cost

is wH + ϕ per walking minute; assuming it takes 24min to walk 2km, we have wH + ϕ =

(19.6 + 12ϕ)/24 = 0.8167 + 0.5ϕ per min.

The vehicle standing cost ϕ is calibrated at £540/month (based on a typical cost of

compact-size “vehicle subscription” cost plus insurance). Assuming non-trivial transporta-

tion demand exists for 10 hours per day, this monthly standing cost corresponds to £1.8/h

or £0.03/min. In addition to the capital cost of the vehicle per se, we also add the social cost

of parking, as unused vehicles create negative congestion externalities.7 Zakharenko (2016)

develops a method to calculate the social cost of parking; this method has been applied

to Melbourne (van Ommeren et al., 2021) and Stockholm (Eliasson and Börjesson, 2022).

Because no similar estimate was done for London, I proxy it (on the conservative side) by

the minimal fee of £0.02/min.8 Thus, ϕ =£0.05/min.

Based on above calibration, the value of maximal “walking cost” is calibrated at wH =

(19.6 + .05× 12)/24− .05 =£0.7917/min. The ratio wH

ϕ
is then 0.7917/0.05 = 15.83.

The minimal λL also depends on equilibrium n. Jochem et al. (2020), based on stated

consumer preferences, estimate that a shared car replaces n = 13.3 private cars in London.

6£3.8 for initial 190.8m, and £0.2 for every additional 95.4m. Reference: https://tfl.gov.uk/modes/taxis-
and-minicabs/taxi-fares/tariffs, accessed on 29.01.2024.

7Zakharenko (2023a) and Zakharenko (2023b) use a separate notation for parking social cost; in the
current paper, it is integrated with ϕ for notational brevity.

8This is based on the £1.1/h minimal fee, as published at
https://www.justpark.com/uk/parking/london/, accessed on 30.01.2024.
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Then, λM(13.3) is given by (30) and equal to 0.9561. Zakharenko (2023a), by comparing

observed usage intensity of shared vs. private vehicles, makes a more conservative estimate

of n = 6, which corresponds to a minimal λL of 0.6111. The latter estimate implies that

at most 38.89% of London automobile users, those with highest walking costs, should use

their vehicles exclusively, while the remaining 61.11% should share. This estimate is based

on the assumption of extreme walking cost inequality, so that the 38.89% have such a high

walking cost that they would need to use taxi to reach a vacant shared vehicle, while the

other 61.11% have zero walking cost. Under any other distribution of walking cost, the share

of those withholding a vehicle would be lower than 38.89%, given the above calibration. In

particular, increasing the share of high-walking-cost population beyond 38.89% would mean

that they should optimally stop withholding their vehicles, and share them alongside others.

4. Conclusion

This paper investigates the theoretical justifications for vehicle withholding, i.e. prevent-

ing a vacant vehicle from being used by others, for the purpose of own future use. It is

shown that inequality in the cost of search for alternative vehicles can justify withholding

by a fraction of individuals with the highest search cost; a theoretical upper bound on such

fraction is established, and calibrated for the city of London.

Future research may explore other potential justifications for vehicle withholding. In

particular, other dimensions of traveller heterogeneity can be analysed. For example people

may differ in how frequently they demand travel, so there is a question of whether vehicle

withholding is more justified for those travelling more frequently. Another possible dimension

is spatial inequality: some locations are more dense than others, so one may wonder whether

withholding is more justified in low-density areas with fewer opportunities for sharing. There

is also a question of open withholding strategy in the presence of multiple types of vehicles

(e.g. luxury/economy, large/small, etc.), and with travellers having heterogenous preferences
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over these types. Can it be optimal to withhold a vehicle of a certain type by a certain

traveller, for example when an alternative vehicle of the same type is difficult to find?
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Appendix A. Proof of Proposition 2

Denote wp ≡ wH

ϕ
> 19 and define by H the difference of social transportation cost in the

lower and the upper optima, multiplied by a positive coefficient:

H(λ, n) ≡ λτ

ϕ
(C0(λ, τ)− C1(λ, τ)) (A.1)

= λn+ (1− λ)
n2

2
− n

√
λ (1 + (1− λ)wp) +

λ

2
(1− λ)wp. (A.2)

By definition, λM(n) is the minimal λ that satisfies

H(λM(n), n) ≤ 0. (A.3)

Because H(0, n) = n2

2
> 0 and H(λ, n) is continuous in both arguments, λM(n), if it exists,

satisfies (A.3) with equality. The condition H(λ, n) = 0 is a quadratic equation with respect

to n, with the following two solutions: n1(λ) = wp

√
λ(1−

√
λ)√

1+(1−λ)wp−1
and n2(λ) defined by the

right-hand side of (30). The constraint ni(λ) ≥ 1 is met when λ ≥ 1
wp

for both i = {1, 2};

moreover, n1

(
1
wp

)
= n2

(
1
wp

)
= 1, and

n2(λ) > n1(λ) ≥ 1, ∀λ ∈
(

1

wp

, 1

]
. (A.4)

9To prove the inequality, see (22) and the discussion following it.
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From above analysis, it follows that λM(1) = 1
wp

, because it is the smaller of the two values

of λ that satisfy H(λ, 1) = 0 (the other one being λ = 1). For n > 1, we have either

n1(λM(n)) = n or n2(λM(n)) = n.

Suppose for some n ∈ (1, wp], n1(λM(n)) exists and is equal to n. Then, by (A.4), we have

that n2(λM(n)) > n. Then, because n2(·) is strictly increasing from 1 to wp (cf.(30)), there

exists λ′ < λM(n) that satisfies n2(λ
′) = n1(λM(n)) = n. By definition of n2(·), we then

have that H(λ′, n) = 0, and therefore λM(n) is not the lowest λ that satisfies H(λ, n) = 0,

contradicting the definition of λM(n).

Therefore, λM(n) is defined by identity n2(λM(n)) ≡ n, n ∈ [1, wp], i.e. λM(·) is the

inverse function of n2(·).
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